Автомобильный портал

Механизм образования пептидных связей в рибосоме. Образование пептидной связи Две равнозначные формы

Под трансляцией в биологии понимают синтез из аминокислот полипептидов , который протекает в цитоплазме на рибосомах при участии 1) мРНК в качестве матрицы, 2) тРНК в качестве переносчика аминокислот, а также 3) ряда белковых факторов , выполняющих каталитическую функцию на разных этапах процесса. Трансляция протекает в клетках всех живых организмов, это фундаментальный процесс живой природы.

С информационной точки зрения трансляцию можно определить как механизм перевода последовательности триплетов мРНК в последовательность аминокислот белка.

Функция рибосом состоит в удерживании в нужном положении мРНК, тРНК и белковых факторов до тех пор, пока не произойдет определенная химическая реакция. Чаще всего это образование пептидной связи между соседними аминокислотами.

Трансляция и биосинтез белк а обычно означают одно и то же. Однако, когда говорят о биосинтезе белка, то нередко в него включают посттрансляционные модификации полипептидов (приобретение ими вторичной, третичной и четверичной структур), а также иногда могут включать процесс транскрипции. С этой точки зрения трансляция рассматривается как важный этап в биосинтезе белков.

Процесс трансляции у эукариот и прокариот имеет ряд отличий, в основном связанный с разнообразием и активностью белковых факторов.

На одной цепочке мРНК может находится несколько рибосом, образуя полисому . При этом сразу происходит синтез нескольких идентичных полипептидов (но каждый находится на своей стадии синтеза).

Синтез одного белка обычно длится несколько секунд.

Аминокислоты, из которых синтезируется полипептид, обязательно проходят стадию активации. Сам же процесс трансляции включает три стадии: инициацию, элонгацию и терминацию.

Процесс трансляции обладает свойством специфичности. Во-первых, определенным кодонам мРНК соответствуют свои тРНК. Во вторых, аминокислоты присоединяются только к «своим» тРНК.

Активация аминокислот

Активация аминокислот необходима, так как только в таком состоянии они способны соединяться с тРНК и позже образовывать между собой пептидные связи.

В цитоплазме клеток всегда находятся свободные (не соединенные с другими веществами) аминокислоты. Специфичные ферменты в присутствии АТФ преобразуют аминокислоту в аминоациладенилат , который уже способен соединяться с тРНК.

Существует класс ферментов – аминоацил-тРНК-синтетаз ы , – которые активируют аминокислоты, используя при этом энергию АТФ. Каждая аминокислота активируется своим ферментом, после чего присоединяется только к своей тРНК. Образуется комплекс аминокислоты с тРНК – аминоацил-тРНК (аа-тРНК) .

Инициация трансляции

Инициация трансляции включает следующие последовательно протекающие при участии факторов инициации этапы:

    Присоединение 5"-конца мРНК к малой субъединице рибосомы. При этом стартовый кодон (AUG) размещается в недостроенном (из-за отсутствия большой субъединицы) P-сайте рибосомы.

    Комплекс аа-тРНК с соответствующим антикодоном присоединяется к стартовому кодону мРНК. У эукариот кодон AUG кодирует аминокислоту метионин, у прокариот - формил-метионин. Позже эти стартовые аминокислоты вырезаются из готового полипептида.

    Происходит объединение субъединиц рибосом, в результате чего достраиваются их P- и A-сайты.

Схема строения рибосомы (A, P, E - участки-сайты для молекул тРНК)

Таким образом, на этапе инициации происходит распознавание рибосомой стартового кодона и подготовка к началу синтеза.

Образующаяся связь между рибосомой и мРНК обратима, мРНК после синтеза полипептида может быть отсоединена от рибосомы. В последствии мРНК используется еще раз или разрушается специальными ферментами.

Стартовый кодон AUG отличается от других таких же кодонов в середине мРНК тем, что перед ним находится кэп и определенные нуклеотидные последовательности. Именно благодаря им AUG распознается как стартовый. (Это касается в основном эукариот.)

Элонгация трансляции

На этом этапе происходит непосредственный синтез полипептидной цепочки. Процесс элонгации состоит из множества циклов. Один цикл элонгации - это присоединение одной аминокислоты к растущей полипептидной цепочке.

Уже на этапе инициации P-сайт рибосомы оказывается занятым первой тРНК, несущей аминокислоту метионин. В первом цикле элонгации в A-сайт рибосомы заходит второй комплекс aa-тРНК. Это будет та тРНК, чей антикодон комплементарен следующему (за стартовым AUG) кодону.

A(аминоацил)- и P(пептидил)-сайты располагают комплексы аа-тРНК так, что между аминокислотами протекает химическая реакция, и образуется пептидная связь.

После этого первая (находящаяся в P-сайте) тРНК освобождается от своей аминокислоты. В результате последняя оказывается связанной только со второй аминокислотой пептидной связью. Вторая аминокислота связана со второй тРНК, находящейся в A-сайте.

Рибосома перемещается по нити мРНК на один триплет. При этом первая т-РНК оказывается в E-сайте (exit) рибосомы, после чего покидает ее. Вторая т-РНК, связанная с двумя аминокислотами, переходит в P-сайт. A-сайт освобождается для поступления третьего комплекса аа-тРНК.

Следующие циклы элонгации протекают аналогично первому. Когда A-сайт освобождается, в него может зайти аа-тРНК, чей антикодон комплементарен кодону мРНК, находящемся в этот момент в A-сайте.

Терминация трансляции

Терминация - это завершения синтеза полипептидной цепочки и ее отделение. Терминация наступает, когда рибосома встречает один из терминирующих кодонов (UAA, UAG, UGA), для которых не существует своих тРНК. Эти участки мРНК распознаются специальными белками - факторами терминации .

В ходе трансляции записанная на мРНК в виде последовательности нуклеотидных оснований информация преобразуется в последовательность аминокислот. Процесс этот протекает на рибосомах, и для его успешной реализации необходим еще один тип РНК - короткие транспортные РНК (тРНК). Каждая молекула тРНК имеет определенную пространственную конфигурацию, несколько напоминающую листок клевера.

В центре молекулы (на верхушке среднего «листка клевера») располагается триплет - антикодон , способный спариваться с комплементарным ему триплетом (кодоном) мРНК. Триплет на конце тРНК может образовывать ковалентную связь со специфической аминокислотой. В клетке существуют тРНК с разными антикодонами, соответственно, способные связываться с каждой из аминокислот, необходимых для синтеза белка.

Сама рибосома представляет собой сложную биохимическую систему, предназначенную для синтеза белка в соответствии с инструкциями, записанными в структуре мРНК. Сначала рибосома связывается с мРНК, а вслед за этим к комплексу мРНК-рибосома присоединяется несущая аминокислоту тРНК, антикодон которой комплементарен первому кодону мРНК. Затем рядом с первой тРНК присоединяется вторая с антикодоном, комплементарным второму кодону мРНК, и т. д. Специальный фермент связывает между собой две аминокислоты, доставленные этими двумя тРНК, которые пока еще остаются присоединенными к комплексу. После этого первая тРНК покидает рибосому, чтобы присоединить новую молекулу соответствующей ей аминокислоты. Тем временем рибосома продвигается вдоль мРНК и вторая тРНК с присоединенной к ней аминокислотой занимает место первой. Все это повторяется многократно до тех пор, пока рибосома не дойдет до стоп-кодона на мРНК, которым заканчивается любой структурный ген. Достигнув его, рибосома и вновь синтезированный белок отсоединяются от мРНК и переходят в цитоплазму клетки.

К одной молекуле мРНК прикрепляется обычно много рибосом, которые, продвигаясь вдоль нее, транслируют кодон за кодоном новые молекулы белка. Такая структура получила название полисома . Рибосомы работают очень эффективно: за 1 с в организме человека синтезируется 5 · 10 14 молекул гемоглобина - белка с уникальной последовательностью из 574 аминокислот.

Процесс биосинтеза белка - один из самых энергоемких в реакциях пластического обмена клетки. На образование одной пептидной связи в синтезируемом белке расходуется четыре молекулы АТФ - две при присоединении аминокислоты к тРНК и две непосредственно на рибосоме.

Четырехатомная функциональная группа –C(=O)NH– называется амидной группой или, когда речь идет о белках, пептидной.

Пептидные связи чаще всего встречаются в природе в составе и , соединяющих между собой остатки . Пептидные связи также является основой пептидной нуклеиновой кислоты (ПНА). Полиамиды, такие как нейлон и арамид, являются синтетическими молекулами (полимерами), которые также содержат пептидные связи.

Образование пептидной связи

Образование пептидной связи происходит в результате реакции конденсации между карбоксильной и аминогруппой. При этом аминогруппа играет роль , замещая гидроксил карбоксильной группы.

Поскольку –OH является плохой уходящей группой, реакция конденсации протекает достаточно тяжело. Обратная реакция – разрушение пептидной связи – называется реакцией гидролиза. При стандартных условиях, химическое равновесие смещается именно в сторону гидролиза, с образованием свободных аминокислот (либо других мономерных единиц). Пептидная связь метастабильна, несмотря на то, что при его гидролизе выделяется порядка 10 кДж / моль энергии, этот процесс без наличия катализатора гидролиза протекает чрезвычайно медленно: время жизни пептида в водном растворе составляет около 1000 лет .

В живых организмах, реакции гидролиза ускоряются ферментами.

Реакция конденсации, в результате которой осуществляется формирование пептидной связи, требует свободной энергии Гиббса . Как в химическом синтезе, так и в биосинтезе белков, реакция обеспечивается активацией карбоксильных групп, в результате чего отхождение гидроксильной группы облегчается.

Резонансные формы пептидных связей

В 1930-1940-х годах Лайнус Карл Полинг (Linus Carl Pauling) и Роберт Кори (Robert Brainard Corey) проводили рентгеноструктурный анализ нескольких аминокислот и дипептидов. Им удалось выяснить, что пептидная группа имеет жесткую планарную структуру, в которой шесть атомов лежат в одной плоскости: ^5,-атом углерода и C=O группа первой аминокислоты, и N-H группа и ^5,-атом углерода второй аминокислоты. Полинг объяснил данный факт существованием двух резонансных форм пептидной группы, на что указывала меньшая длина C-N связи в пептидной группе (133 пм), в сравнении с той же связью у простых аминов (149 пм). Вследствие частичного разделения электронной пары между карбонильным кислородом и амидным азотом, пептидная связь на 40% имеет двойные свойства.

Резонансные формы типичной пептидной группы. Незаряженная единичная форма (около 60%) показана слева, заряженная двойная форма (около 40%) справа.

В пептидных группах вращения вокруг C-N связи не происходит вследствие ее частичной двойственности. Вращение возможно только вокруг связей С-С ^5, и N-С ^5, . В результате остов пептида может быть представлен в виде серии полей, разделенных совместными точками вращения (С ^5, атомы). Данная структура ограничивает количество возможных пептидных цепей.

Кроме того, эффект резонанса стабилизирует группу, добавляя энергию примерно 84 ккал / моль, что делает ее менее химически активной, в сравнении с подобными группам (например, эфирами). Данная группа не имеет заряда с точки зрения физиологических значений pH, однако вследствие существования двух резонансных форм, карбонильный кислород несет частично отрицательный заряд, а амидный азот – частично положительный. Таким образом, возникает диполь с дипольным моментом, около 3,5 Дебай (0,7 электрон-ангстрем). Указанные дипольные моменты могут ориентироваться параллельно в определенных типах вторичной структуры (например ^5,-спирали).

Конфигурации пептидной связи

Для планарной пептидной связи возможны две конфигурации:

  1. Транс-конфигурация,
  2. Цис-конфигурация.

В транс-конфигурации ^5,-атомы углерода и боковые цепи расположены по разные стороны пептидной связи, в то время как в цис-конфигурации – с одной и той же. «Транс» – форма пептидных связей значительно более широко распространена (встречаясь в 99,6% случаев), нежели «цис», из-за того, что в последнем случае велика вероятность пространственного столкновения между боковыми группами аминокислот.

Исключением является аминокислота , если она будет соединена через аминогруппу с какой-либо другой аминокислотой. Пролин – единственная из протеиногенных аминокислот, содержащих около C ^5, не первоначальную , а вторичную аминогруппу. В ней атом азота связан с двумя атомами углерода, а не с одним, как у других аминокислот. У пролина, включенного в пептид, заместители при атоме азота отличаются не так сильно, как в других аминокислотах. Поэтому разница между «транс» и «цис» конфигурациями весьма незначительна, ни одна из них не имеет энергетического преимущества.

Возможные конформации

Конформация пептида определяется тремя двугранными углами, отражающими вращения вокруг трех последовательных связей в пептидной остове: `8, (пси) – вокруг C ^5,1 -С, `9, (омега) – вокруг С-N, и `6, (фи) – вокруг N-С ^5,2 .

Вращения вокруг собственно пептидной связи не происходит, так как `9, угол всегда имеет значение около 180 ° у транс-конфигурации, и 0 °, – у значительно более редкой цис-конфигурации.

Поскольку связи N-С ^5,2 и C ^5,1 -С по обе стороны от пептидной являются обычными одинарными связями, вращения вокруг них неограниченно, в результате чего пептидные цепи могут принимать самые разнообразные пространственные конформации. Однако возможны далеко не все комбинации двугранных углов, при некоторых из них происходит пространственное столкновения атомов. Допустимые значения визуализируют на двухмерном графике, именующемся диаграммой Рамахандрана.

Методы определения пептидных связей

Методы определения пептидных связей основаны на том, что пептидная группа имеет характерную полосу поглощения в диапазоне 190-230 нм.

Качественной реакцией на пептидную связь является биуретовая реакция с концентрированным раствором меди (II) сульфата (CuSO 4) в щелочной среде. Продуктом является комплексное соединение сине-фиолетовой окраски между атомом меди и атомами азота.

Биуретовая реакция может быть использована для колориметрического измерения концентрации белков и пептидов, однако из-за низкой чувствительности этого метода значительно чаще используются его модификации. Одной из таких модификаций является , в котором биуретовая реакция сочетается с окислением остатков ароматических аминокислот.

Примечания

Примечания и пояснения к статье «Пептидная связь».

Трансляция

Общие сведения

Трансляция - это процесс, в результате которого рибосомы считывают генетическую информацию матричных РНК и создают белковый продукт в соответствии с этой информацией.
Специфические молекулы транспортрых РНК (тРНК) служат посредниками между кодом мРНК и конечной белковой последовательностью. В их состав входит последовательность, узнающая код мРНК и соответствующая этому коду аминокислота.
События трансляции разделяют на последующие события: инициацию, элонгацию и терминацию. На стадии инициации рибосома связывает мРНК и первая аминокислота присоединяется к рибосоме. Во время элонгации происходит рост полипептидной цепи. На стадии терминации рибосома отделяется от мРНК и процес трансляции заканчивается. У прокариот и эукариот процессы трансляции схожи, но имеются и существенные различия.
Трансляция происходит в цитоплазме, где находятся рибосомы. В зависимости от дальнейшего преднозначения синтезируемых белков, они могут образовываться либо в цитозоле, либо на поверхности шероховатого эндоплазматического ретикулума.

Полипептидные цепи синтезируются однонаправленно: с амино-конца к карбокси-концу.

При инициации первая и вторая молекулы аминоацил-тРНК спариваются с первыми двумя кодонами мРНК. Далее трансляция продолжается в направлении 5"–>3" кодон за кодоном до тех пор, пока не достигнет стоп-сигнала, расположенного сразу же за кодоном, детерминирующим С-концевую аминокислоту.

Литература:

Генетический код

Литература:

К сожалению, список литературы отсутствует.

Трансляция у эукариот

Вместо комплементарного РНК-РНК узнавания, в которое вовлечена прединициирующая последовательность Шайна-Дальгарно прокариотических мРНК, эукариотические мРНК узнаются эукариотическими рибосомами по кэпированному 5"-концу с обязательным участием белка, например, eIF-4F инициаторного фактора (Rhoads, 1988). Предполагается, что этот белок участвует в расплавлении вторичных структур 5"- областей мРНК, облегчая их связывание с малыми субчастицами рибосом. В отличие от прокариот, эукариотическая мРНК образует комплексы с белками (мРНП, или мессенджер-рибонуклеопротеиды, или информосомы), что обусловливает ее метаболическую стабильность. Вследствие этого у эукариот отсутствует постоянная интенсивная деградация и интенсивный ресинтез мРНК, которые, как правило, моноцистронны и имеют специфически модифицированный (кэпированный) 5"-конец. Все это обусловливает целый ряд особенностей инициации трансляции и ее регуляции у эукариотических организмов. Естественно, что метаболическая стабильность эукариотической мРНК делает регуляцию на уровне трансляции особенно важной в общей картине регуляции биосинтеза белка (Спирин, 1986).

Литература:

К сожалению, список литературы отсутствует.

Трансляция у прокариот

Трансляция бактерии E.coli наиболее изучена

Синтез белка происходит на рибонуклеопротеиновом комплексе - рибосоме, в процессе трансляции mRNA. Рибосома состоит из большой и малой субъединиц, которые соединены в области инициации трансляции (translation initiation region -TIR) mRNA во время стадии инициации трансляции. Во время элонгации рибосома скользит вдоль mRNA и синтезирует полипептидную цепь. Элонгация продолжается до тех пор, пока рибосома не достигает стоп-кодона на mRNA - терминация трансляции. После терминации рибосома отделяется от синтезированного полипептида и способна снова повторить цикл трансляции mRNA.
Каждая стадия трансляции имеет свои регуляторные факторы, но у эукариот этих факторов гораздо больше, чем у прокариот.
Инициация

Инициация

Последовательность инициации трансляции у бактерии. 30S и 50S рибосомные субъединицы показаны светлым и темным серым цветом.

Рибосомы прокариот инициируют трансляцию на мРНК уже во время транскрипции. Время необходимое для посадки рибосом порядка секунд, хотя это зависит от каждой мРНК. Рибосомы транслируют мРНК со скоростью приблизительно 12 аминокислот в секунду.
В инициации трансляции участвуют: рибосома, аминоацилированная и формилированная тРНК (fMet-tRNA f Met), мРНК и три белковых инициирующих фактора IF1, IF2 и IF3.
Бактериальная 70S рибосома состоит из большой 50S и малой 30S субъединицы. Имеется три tRNA связывающих сайта аминоацил - aminoacyl (A), пептидил - peptidyl (P), и сайт выхода - exit (E). Присоединение фактора IF3 к 30S рибосомной субъединице обеспечивает распад рибосомы на субъединицы. Фактор инициации IF1 связывается с A-сайтом 30S рибосомной субъединицы и служит инициатором присоединения tRNA к рибосомному P-сайту блокируя A-сайт. IF1 стимулирует активность IF3 и также распад рибосомных субъединиц.
После распада субъединиц, IF2, mRNA и fMet-tRNAfMet соединяются с 30S рибосомной субъединицей. Последовательность Шайно-Дальгарно (Shine-Dalgamo -SD) mRNA взаимодействует с anti-SD последовательностью 16S rRNA и инициирующий кодон присоединяется в Р-сайте рибосомы. Инициирующие факторы, особенно IF3, способствуют этому присоединению.
Инициаторная tRNA устанавливается в P-сайте 30S рибосомной субъединицы в три шага не зависимо от кодона, зависимо от кодона и fMet-tRNAfMet присоединение.
Все три шага обеспечиваются фактором IF2, который взаимодействует с fMet-tRNA f Met на рибосоме. IF3 стабилизирует присоединение fMet-tRNAfMet к рибосомному P-сайту и стабилизирует кодон-антикодон взаимодействие.

30S преинициаторный комплекс состояций из 30S рибосомной субъединицы, трех инициаторных факторов, mRNA в стартовой позиции, где fMet-tRNA f Met связана кодон независимо. Такой относительно нестабильный комплекс подвергается конформационному изменению, что обеспечивает кодон-антикодон взаимодействие и формирует более стабильный 30S инициаторный комплекс. Инициаторные факторы IF1 и IF3 отсоединяются, тогда как IF2 фактор стимулирует взаимодействие с 50S рибосомной субъединицей. После сборки рибосомы IF2 покидает комплекс. Во время этого процесса GTP связанный с IF2 гидролизуется до GDP и Pi. Вновь образованный 70S инициаторный комплекс, содержащий fMet-tRNA f Met как субстрат для пептидилтрансферазного центра 50S рибосомной субъединицы готов к вступлению в фазу элонгации трансляции.

Факторы инициации : IF-1, IF-2, IF-3 - белки временно связывающиеся с рибосомой, необходимые для инициации.

Этапы инициации трансляции

1. Факторы инициации IF-1 и IF-3 связываются с 30S-субчастицей, что обеспечивает ее взаимодействие с IF-2, инициаторной формилметиониновой-тРНК (Fmet-тРНК F Met) и GTP.

2. При связывании инициаторных белков IF-1 и IF-2 с 30S-субчастицей происходит диссоциация 70S-рибосомы на две субъединицы.

3. Комплекс 30S-субъединицы со всеми факторами инициации и Fmet-тРНК F Met связывается с 5"-концом мРНК вблизи кодона AUG и узнает. AUG-кодон мРНК.

Связывание 30S-субчастицы с мРНК находится под строгим контролем нуклеотидной последовательности, расположенной примерно
за 10 нуклеотидов до 5"-конца инициаторного кодона. Взаимодействию способствует комплементарное спаривание этой богатой пуринами по следовательности из 5-8н, называемой последовательностью Шайна-Дальгарно , с полипиримидиновым участком, находящимся вблизи 3"-конца 16S-pPHK.

4. Формирование полноценного функционального комплекса инициации завершается ассоциацией 50S-субчастицы с преинициаторным комплексом. При ассоциации 70S-рибосомы образуются два активных центра: Р- и А-участки. Fmet-TPHK F Met занимает Р-участок.

5. С образованием функциональной 70S-субчастицы отделяются все три белка инициации.

Элонгация

Факторы элонгации : EF-Tu и EF-Ts - белки связывающиеся с рибосомой, необходимые для элонгации трансляции.
В процессе инициации образуется 70S-рибосома связанная с мРНК, в Р-центре которой находится Fmet-тPHK F Met
Для образования первой пептидной связи необходимо, чтобы
аминоацил-тРНК, соответствующая следующему кодону, заняла А-центр.
Этапы элонгации трансляции :
1. EF-Tu- GTP связывает все аминоацил-тРНК, кроме Fmet-тPHK F Met , и доставляет их к А-центру комплекса 70S-рибосома-мРНКАминоацил-тРНК связывает EF-Tu и GTP. Образовавшийся комплекс (аминоацил-тРНК-[ЕF-Тu-GТР]) доставляет аминоацил-тРНК к А-участку. GTP гидролизуется, и комплекс (EF-Tu-GDP) отделяется от рибосомы. EF-Ts восстанавливает EF-Tu-GDP.

2. Когда оба участка, А и Р, заняты, пептидилтрансферазная активность 50S-субчастицы катализирует перенос группы Fmet с ее тРНК на аминогруппу аминоацил-тРНК, находящейся в А-участке. В результате в А-участке оказывается дипептидил-тРНК , а в Р – свободная тРНК.

3. тРНК освобождает Р-участок, образовавшаяся дипептидил-тРНК переместиться на него, а новый кодон должен быть готов к тому, чтобы занять освободившийся А-участок. Все эти процессы
осуществляются с помощью EF-G при GTP-зависимой транслокации рибосомы.

4. Теперь новый кодон, занявший А-сайт, готов к спариванию с родственной аминоацил-тРНК. Сразу после связывания аминоацил-тРНК с А-
участком высвобождается комплекс EF-Tu-GDP и происходит регенерация функционально активного EF-Tu-GTP. При этом EF-Tu-GDP взаи- модействует с белком EF-Ts, что приводит к отделению GDP и образованию комплекса EF-Tu EF-Ts. Далее EF-Tu EF-Ts взаимодействует с GTP, происходит регенерация EF-Tu-GTP и отделение EF-Ts, и оба соединения оказываются готовыми к следую- щему циклу.

Для прочтения следующего кодона и удлинения полипептидной цепи еще на одну аминокислоту вся серия реакций должна повториться.

При образовании каждой пептидной связи расходуется энергия, равная четырем энергетическим эквивалентам (если за один эквивалент принять энергию образования фосфатной связи): два эквивалента АТР потребляются при аминоацилировании тРНК и два эквивалента GTP-

В каждом цикле элонгации.

2. При инициации трансляции IF-2 узнает Fmet-тРНКFMet среди всех других аминоацил-тРНК, a EF-Tu отличает met-тРНКF Met от
Fmet-тРНКM Met при внедрении в А-участок.

3. Факторы элонгации EF-Tu и EF-G то присоединяются, то отделяются от рибосомы в зависимости от того, связаны ли они с GTP или с GDP соответственно.

4. Растущая полипептидная цепь всегда соединена своим карбоксильным концом с тРНК, которая соответствует С-концевой аминокислоте в растущей полипептидной цепи.

5. Пептидилтрансфераза катализирует формирование пептидных связей между карбоксильным концом растущей цепи и аминогруппой аминоацил-тРНК.

Терминация

Факторы терминации:
RF-1
вызывает отделение полипептидной цепи при считывании кодонов UAA и UAG;
RF-2
действует аналогичным образом при считывании UAA и UGA,
EF-3 может облегчить работу двух других факторов.
Этапы терминации трансляции:

1. В А-участке оказывается один из трех терминирующих кодонов – UAG, UAA или UGA. Из-за отсутствия тРНК, отвечающих этим кодонам,полипептидил-тРНК остается связанной с Р-участком.

2. RF-1 и RF-2 катализируют отсоединение полипептидной цепи от тРНК, отделение их обоих от рибосомы, а 70S-рибосомы – от мРНК.
RF-1 узнает в А-участке кодон UAA или UAG; RF-2 включается в том случае, когда в А-участке оказы-вается UAA или UGA;
RF-3 облегчает работу двух других факторов. Если терминирующим кодономявляется UAA, то эффективность процесса терминации оказывается наибольшей, поскольку этот кодон узнают оба фактора – RF-1 и RF-2. Однако, каким бы из стоп-кодонов ни обеспечивалась терминация,ее эффективность зависит от фланкирующих эти кодоны последовательностей в мРНК.

Когда расстояние от рибосомы до сайта инициации достигнет величины 100–200 нуклеотидов, в этом сайте может произойти новая инициация трансляции. Таким образом на одной мРНК
может находится несколько транслирующих рибосом - полирибосомы (рис)

Рибосомы

Характерискика рибосом


Рибосомы
эукариот
: 80S , размер - 22x32 нм,
M ~4.5 млн.Да состоит из двух субъединиц.

Большая субъединица М=3.0млн.Да, 60S
.
Малая субъединица
М=1.5 млн.Да, 40S .

В цитоплазме эукариотической клетки содержится ~10 млн. рибосом
эукариотического типа.

Рибосомы прокариот :
70S , размер - 21x29 нм, М ~2.8 млн.Да,
состоит из двух субъединиц.

Большая субъединица М=1.8млн.Да 50S
.

Малая субъединица М=1.0млн.Да 30S
.

В клетке E.coli содержится ~15тыс. рибосом, что составляет
– 1/4 сухой массы клетки. Рибосомы прокариотического типа
присутствуют в митохондриях и пластидах эукариот.

Малые и большие субъединицы могут диссоциировать на составляющие
РНК и белки и самособираются при определенных условиях.

Строение рибосом

Рибосома имеет два участка для связывания тРНК:

Р-центр (пептидил-тРНК-связывающий центр)
-
связывание тРНК присоединенной к растущей полипептидной
цепи.

А-центр (аминоацил-тРНК-связывающий участок)
-
связвает тРНК несущую следующую добавляемую аминокислоту,
располагается на большой субъединице рибосомы.

Аcn
центр

пептидилтрансфераза
образует пептидные связи между актами, прочно связывается
с рибосомой.

рибосома
р эукариот 22x32 нм, M~4.5 млн.Да 80S. Большая субъед М=3.0млн.Да, 60S ; малая субъед М=1.5 млн.Да, 40S.
1rRNA18S (~2 тыс.н),~33 белка] | в цитоплазме Eu ~10 млн.р эукариотич типа |
р прокариот: 21x29 нм, М ~2.8 млн.Да, 70S | большая субъед М=1.8млн.Да 50S; малая субъед М=1.0млн.Да 30S | E.coli ~15тыс р – 1.4 сухой m кл | р прокариотич типа присут в митох и пластидах Eu |
| P-центр пептидил-тРНК-связывающий центр, А-центр большой субъед. р – аминоацил-тРНК-связывающий участок, Аcn центр | пептидилтрансфераза – образ. пептидные связи м-у актами, прочно связан с р | р прокариот мельче и сод меньше компонентов
мРНК [кэп | 5’-НТО | AUG | транслируемая область | стоп 3’-НТО | поли(А)]
инициация сканирование РНК малой субъединицой рибосомы | связывание со стартовым (инициирующим) кодоном AUG-5’ конца – сборка рибосомы | инициаторный комплекс, факторы инициации | Первой к мРНК присоед малая субъед. р связанная с инициаторной-тРНК узнающей AUG и несущей метионин. Процесс катализируется фактором инициации 2 IF2 – фосфорилирование одной из трех его субъед. снижает активность ф-та – контроль белкогого синтеза (незрелые эритроциты) | элонгация 5’?3’ | транслокация – возвращение пустой тРНК в цитоплазму | транслокация рибосомы вдоль мРНК сопровожд. конформационными изменениями с затратой энергии GTP (4GTP вцелом на 1 пепт. связь) | кодон мРНК спаривается с антикодоном тРНК | карбоксильный конец растущего полипептида связан ковалентно с тРНК – пептидил-тРНК | образ. полисомы | терминирующий кодон (стоп-кодон) UAA, UAG, UGA – диссоциация рибосомы – терминация | фактор освобождения-белок связ с стоп-кодоном и меняет активность пептидилтрансферазы кот присоед к пептидил-тРНК Н2О и полипептид отделяется от тРНК и выходит из р | Цикл элонгации составляет 1/20 сек – белок в 300 акт синтезируется за 20 сек Ecoli

Литература:

К сожалению, список литературы отсутствует.

Транспортная РНК

70-90Н | вторичная стр-ра- клеверный лист | CCA 3" const для всех tRNA |к концевому аденозину присоед акта |
наличие тимина, псевдоуридина-пси, дигироуридина ДГУ в D-петле - защита от рибонуклеаз? долгоживущие | Разнообразие первичных структур tРНК - 61+1 - по кол-ву кодонов + формилметиониновая tРНК, у кот антикодон такой же, как у метиониновой tРНК. Разнообразие третичных структур - 20 (по кол-ву аминокислот) | рекогниция - образование ковалентной связи м-у tРНК и актой | аминоацил-тРНК-синтетазы присоединяют акты к тРНК

Функция тРНК заключается в переносе аминокислот из цитоплазмы в рибосомы, в которых происходит синтез белков.
тРНК связывающие одну аминокислоту называются изоакцепторными.
Всего в клетке одновременно существует 64 различных тРНК.
Каждая тРНК спаривается только со своим кодоном.
Каждая тРНК распознает свой собственный кодон без участия аминокислоты. Связавшиеся с тРНК аминокислоты химически модифицировали, после чего анализировали получившийся полипептид, который содержал модифицированную аминокислоту. Цистеинил-тРНКCys (R=CH2-SH) восстанавливали до аланил-тРНКCys (R=CH3).
Большинство тРНК, не зависимо от их нуклеотидной последовательности, имеют вторичную структуру в форме клеверного листа из-за наличия в ней трех шпилек.

Особенности структуры тРНК

На 3"-конце молекулы всегда находятся четыре неспаренных нуклеотида, причем три из них – это обязательно ССА. 5"- и 3"-концы цепи РНК образуют акцепторный стебель. Цепи удерживают-ся вместе благодаря комплементарному спарива-нию семи нуклеотидов 5"-конца с семью нуклеотида-ми, находящимися вблизи 3"-конца. 2. У всех моле-кул имеется шпилька T?C, обозначаемая так пото-му, что она содержит два необычных остатка: рибо-тимидин (Т) и псевдоуридин (?). Шпилька состоит из двухцепочечного стебля из пяти спаренных осно- ваний, включая пару G-C, и петли длиной семь нуклеотидов. Тринуклеотид Т?С всегда расположен
в одном и том же месте петли. 3. В антикодоновой шпильке стебель всегда представлен семью спарен-
ными основаниями. Триплет, комплементарный родственному кодону,– антикодон – находится в пет-
ле, состоящей из семи нуклеотидов. С 5"-конца антикодон фланкируют инвариантный остаток ура-
цила и модифицированный цитозин, а к его 3"-концу примыкает модифицированный пурин, как правило
аденин. 4. Еще одна шпилька состоит из стебля длиной три-четыре пары нуклеотидов и петли варь-
ирующего размера, часто содержащей урацил в вос-становленной форме – дигидроурацил (DU). Наиболее сильно варьируют нуклеотидные по-следовательности стеблей, число нуклеотидов меж-ду антикодоновым стеблем и стеблем Т?С (вариа-бельная петля), а также размер петли и локализация остатков дигидроурацила в DU-петле.
[Сингер, 1998].

Третичная структура тРНК

L-образная структура.

Присоединение аминокислот к тРНК

Для того чтобы аминокислота могла образовывать полипептидную цепь она должна присоединиться к тРНК с помощью фермента аминоацил-тРНК-синтетазы. Этот фермент образует ковалентную связь между карбоксильной группой аминокислоты и гидроксильной группой рибозы на 3’-конце тРНК при участии АТФ. Аминоацил-тРНК-синтетаза узнает специфический кодон не из-за наличия антикодона на тРНК, а по наличию специфического сайта узнавания на тРНК.
Всего в клетке имеется 21 различных аминоацил-тРНК-синтетаз.
Присоединение происходит в две стадии:
1. Карбоксильная группа аминокислоты присоединяется к а-фосфату АТФ. Полученный нестабильный аминоацил-аденилат стабилизируется связываясь с ферментом.
2. Перенос аминоацильной группы аминоацил-аденилата на 2’ или 3’-OH-группу концевой рибозы тРНК
Некоторые аминоацил-тРНК-синтетазы состоят из одной полипептидной цепи, другие – из двух или четырех идентичных цепей, каждая молекулярной массой от 35 до 115 кДа. Некоторые димерные и тетрамерные ферменты состоят из субъединиц двух типов. Четкой корреляции между размером молекулы фермента или характером его субъединичной структуры и специфичностью не существует.
Специфичность фермента определяется его прочным связыванием с акцепторным концом тРНК, DU-участком и вариабельной петлей. Некоторые ферменты, по-видимому, не распознают антикодоновый триплет и катализируют реакцию аминоацетилирования даже при измененном антикодоне. Однако отдельные ферменты проявляют пониженную активность по отношению к таким модифицированным тРНК и при замене антикодона присоединяют не ту аминокислоту.

70-90н | вторичная стр-ра- клеверный лист | CCA 3" const для всех tRNA |к концевому аденозину присоед акта |
наличие тимина, псевдоуридина-пси, дигироуридина ДГУ в D-петле - защита от рибонуклеаз? долгоживущие | Разнообразие первичных структур tРНК - 61+1 - по кол-ву кодонов + формилметиониновая tРНК, у кот антикодон такой же, как у метиониновой tРНК. Разнообразие третичных структур - 20 (по кол-ву аминокислот)

Имеются два вида тРНК связывающие метионин тРНКFMet и тРНКMMet у прокариот и, тРНКIMetи тРНКMMet - у эукариот. К каждой тРНК добавляется метионин с помощью соответствующих аминоацил-тРНК-синтетез. метионин присоединенный к тРНКFMet и тРНКIMet формилируется ферментом метионил-тРНК-трансформилазой до Fmet-тРНКFMet. тРНК нагруженные формилметионином узнают инициаторный кодон AUG.

Литература:

К сожалению, список литературы отсутствует.

Трансляция-это процесс декодирования мРНК, в результате которого информация с языка последовательности нуклеотидов в мРНК переводится (транслируется) на язык последовательности аминокислот в полипептидной молекуле. Декодирование мРНК осуществляется в направлении 5’→3’. В процессе трансляции различают стадии:

1) активация аминокислот;

2) аминоацилирование тРНК;

3) собственно трансляция.

Активация аминокислот . Это процесс присоединения аминокислоты с помощью своей карбоксильной группы к a-фосфату АТР с помощью специфической аминоацил-тРНК-синтетазы (рис. 3.10). Реакция сопровождается высвобождением неорганического пирофосфата и образованием аминоациладенилата (АК-АМР). Аминоацил-аденилат обладает очень высокой реакционной способностью и стабилизируется благодаря прочному связыванию с ферментом. Данный процесс характеризуется высокой специфичностью: для каждой аминокислоты существует собственный фермент (ферменты).

Аминоацилирование тРНК . Представляет собой перенос аминоацильной группы от связанного с ферментом аминоацил-аденилата на 2’- или 3’-ОН-группу концевой рибозы тРНК в акцепторной ветви (рис. 3.11).

Ключевой особенностью реакции, приводящей к аминоацилированию тРНК, является специфичность участвующих в ней ферментов. Присоединение к тРНК каждой из 20 аминокислот, встречающихся в белках, катализируется определенной аминоацил-тРНК-синтетазой. Фермент должен отличить одну аминокислоту от 19 других и перенести ее к одной или нескольким изоакцепторным тРНК из имеющихся примерно 75 других тРНК. При этом следует подчеркнуть высокое сходство в структуре многих аминокислот (лейцин, валин и изолейцин; валин и треонин; аспарагиновая и глутаминовая кислоты; и др.), а также удивительное сходство вторичной и третичной структур тРНК. Поэтому даже очень высокой специфичности, присущей данным ферментам, оказывается недостаточно, чтобы не допустить ошибок, и синтетазы могут исправлять ошибки, происходящие при присоединении. Это имеет место при гидролизе связи между аминокислотой и АМР в комплексе фермент-aминоацил-аденилат. В таком случае формирование ошибочно аминоацилированной тРНК предотвращается. Напротив, механизм, с помощью которого удалялось бы уже присоединенная к тРНК неправильная аминокислота, отсутствует. В таких случаях аминокислота занимает неправильную позицию в белке. Частота таких ошибок очень низка (например, в гемоглобине кролика 10-5).

Собственно трансляция . Процесс трансляции осуществляется на рибосомах - клеточных органеллах, представляющих собой сложный комплекс из белков и молекул РНК. В течение всего процесса синтеза белка растущая полипептидная цепь, мРНК и очередная аминоацил-тРНК остаются прикрепленными к рибосоме. У прокариот и эукариот рибосомы различаются по величине и составу (рис. 3.12). Коэффициент седиментации рибосом прокариот составляет 70S (S - Сведберг, единица измерения скорости, с которой частица оседает при центрифугировании; 1S=10 -13 с), а у эукариот для рибосом, обнаруживаемых в цитоплазме, он равен 80S.

Рибосомы при определенных условиях могут диссоциировать на большую и малую субчастицы, а каждая субчастица, в свою очередь, на составляющие молекулы белка и РНК (рис. 3.12). Все эти компоненты могут снова ассоциировать с образованием функционально активной рибосомы, если созданы соответствующие условия.

Электронно-микроскопические исследования 70S-рибосом показали, что малая и большая субчастицы соприкасаются в нескольких точках, причем между ними образуется бороздка, необходимая для размещения мРНК во время трансляции. Для понимания процесса трансляции важны два основных в функциональном отношении участка на 70S-рибосоме. Участок (сайт ) А служит для присоединения аминоацил-тРНК, а с сайтом Р связывается растущая пептидная цепь.

В процессе трансляции, кроме аминоацил-тРНК и рибосом, принимает участие большое количество вспомогательных белков-факторов инициации, элонгации и терминации транскрипции.

Суть процесса трансляции состоит в последовательном декодировании мРНК в направлении 5’→3’ с помощью аминоацилированных тРНК, в ходе которого происходит последовательная конденсация аминокислотных остатков, начиная с амино-(N)-конца полипептидной цепи, в направлении к карбоксильному (С)-концу. Матричный принцип процесса соблюдается при узнавании комплементарных нуклеотидов в составе очередного кодона мРНК и антикодона тРНК. Наиболее полно трансляция изучена у прокариот, и механизм этого процесса будет рассмотрен на примере трансляции у E. coli.

Инициация трансляции . Считывание мРНК начинается с кодона AUG, который обозначает 5’-конец кодирующей последовательности и детерминирует N-концевую (первую) аминокислоту синтезируемого полипептида. Для инициации трансляции необходимо наличие 30S-субчастицы рибосомы, которая связывается в комплекс с белками - факторами инициации (IF1, IF2, IF3), GTP и Fmet-тРНК. Такой полный комплекс связывается с 5’-концом кодирующей последовательности мРНК вблизи кодона AUG. Очевидно, IF2 способен отличить Fmet-тРНК (формил-метионин-тРНК) от met-тРНК, которая связывается с кодонами AUG во внутренней части мРНК, но не может начать трансляцию со стартового кодона AUG. Эта специфичность обеспечивается N-формильной группой, отсутствующей у met-тРНК.

Распознавание стартового кодона осуществляется следующим образом. Связывание 30S-субчастицы с мРНК находится под строгим контролем нуклеотидной последовательности, расположенной примерно за 10 нуклеотидов до 5’-конца стартового кодона. Взаимодействию способствует комплементарное спаривание этой богатой пуринами последовательности с полипиримидиновым участком, находящимся в составе 16S-рРНК. Процесс инициации зависит от многих условностей в структуре взаимодействующих участков, в том числе от вторичной структуры того участка молекулы мРНК, в котором находится стартовый кодон AUG. Это имеет значение для процессов регуляции эффективности синтеза белка.

Итак, при инициации указанный комплекс связывается с Р-сайтом 30S-субчастицы рибосомы, и первой аминокислотой в составе пептида будет формил-метионин. Далее следует присоединение 50S-субчастицы рибосомы и формируется 70S-инициирующий комплекс (рис.3.13). Источником энергии для инициации синтеза белка служит расщепление GTP до GDP и Pi.

Элонгация трансляции . Для образования первой пептидной связи необходимо, чтобы аминоацил-тРНК, соответствующая следующему кодону, заняла А-участок рибосомы. Для этого аминоацил-тРНК должна сначала связать белок EF-Tu (один из факторов элонгации) и GTP. Образовавшийся тройной комплекс (аминоацил-тРНК- ) и доставляет аминоацил-тРНК к А-участку. GTP в это время гидролизуется, и комплекс (EF-Tu-GDP) отделяется от рибосомы. Когда оба участка, А и Р, заняты, пептидилтрансферазная активность 50S-субчастицы катализирует перенос группы Fmet с ее тРНК на аминогруппу аминоацил-тРНК, находящуюся в А-участке (рис.3.14). В результате в А-участке оказывается дипептидил-тРНК, а в Р -свободная тРНК (рис. 3.13).

Пептидилтрансферазная активность рибосом связана, по-видимому, не с белковой частью 50S-субъединицы, а с одним из РНК-компонентов - рибозимов.

Для прочтения следующего кодона и удлинения полипептидной цепи еще на одну аминокислоту вся серия реакций должна повториться. Однако прежде чем это произойдет, свободная тРНК освобождает Р-участок, образовавшаяся дипептидил-тРНК перемещается на него с А-участка (при этом не происходит взаимодействия кодона с антикодоном), а рибосома продвигается скачкообразно (на 3 нуклеотида) в сторону 3’-конца мРНК. Все эти процессы осуществляются с помощью фактора элонгации EF-G при GTР-зависимой транслокации рибосомы. В результате этих трех актов освобождается участок А и экспонируется следующий кодон, что позволяет начаться следующему циклу элонгации (рис. 3.13). Следует отметить, что при образовании каждой пептидной связи расходуется энергия, равная четырем энергетическим эквивалентам (если за один эквивалент принять энергию образования фосфатной связи): два эквивалента АТР потребляются при аминоацилировании тРНК и два эквивалента GTР - в каждом цикле элонгации.

Терминация трансляции . Процесс последовательной трансляции кодонов, в конце концов, доходит до того момента, когда в А-участке оказывается один из трех терминирующих кодонов - UAG, UAA или UGA. В природе не существует таких тРНК, антикодоны которых соответствовали бы этим кодонам. Здесь вступают в действие факторы терминации - RF-1 и RF-2, которые катализируют отсоединение полипептидной цепи от тРНК, тРНК - от рибосомы, а 70S-рибосому - от мРНК.

После инициации трансляции 70S-рибосома удаляется от сайта инициации по мере считывания каждого последующего кодона. Когда расстояние от рибосомы до сайта инициации достигнет величины 100-200 нуклеотидов, в этом сайте может произойти новая инициация. Более того, как только вторая рибосома пройдет такое же расстояние, может произойти третья инициация, и т. д. Итак, одну и ту же белок-кодирующую последовательность мРНК могут одновременно транслировать несколько рибосом. Подобные мультирибосомные трансляционные комплексы называются полирибосомами или полисомами .

Матричные РНК, состоящие из нескольких белок-кодирующих участков, часто транслируются последовательно: когда рибосома доходит до термини рующего кодона в первой последовательности, она отделяется от мРНК и со следующим инициирующим участком связывается новый комплекс. Иногда этого не происходит, и транслирующая первую кодирующую последовательность рибосома, не отделяясь, перемещается вдоль мРНК, инициируя трансляцию в других сайтах.

В некоторых случаях трансляция первой кодирующей последовательности может начаться и даже завершиться еще до окончания транскрипции остальных последовательностей, как, например, в случае lac- или trp-оперонов E.coli.

Особенности трансляции у эукариот . Процесс трансляции эукариотической мРНК в основном аналогичен таковому для прокариот. Однако имеется ряд отличий. Во-первых, аппараты транскрипции и трансляции у эукариот разобщены во времени и в пространстве, поскольку транскрипция осуществляется в ядре, а трансляция - в цитоплазме. Во-вторых, инициирующей аминоацил-тРНК у эукариот служит не Fmet-тРНК, а специальная инициирующая met-тРНК. В-третьих, на 5ў- и 3ў-концах эукариотичеких мРНК имеются особые структуры - «кэпы» и «шлейфы», принимающие участие в трансляции. Известно, что отдельные факторы инициации трансляции узнают кэпированные области для связывания с мРНК и начала процесса трансляции.

Похожие публикации