Автомобильный портал

Защита акб от глубокого разряда. Защита акб от глубокого разряда Защита от глубокого разряда акб

Создавая устройства с автономным питанием необходимо позаботиться о защите аккумулятора от глубокого разряда. Достаточно один раз упустить момент и допустить глубокую разрядку акб ниже минимального порога напряжения и ваш аккумулятор выйдет из строя, либо потеряет часть емкости и окажется неспособен работать на номинальных токах нагрузки.

С целью предотвращения случаев снижения напряжения ниже критической отметки в разрыв цепи акб- потребитель устанавливают схемы защиты, которые состоят из нескольких узлов:
компаратора и силового ключа.

Требования к схеме защиты:

  • малый ток утечки (собственное потребление)
  • коммутация токов сравнимых с максимально допустимыми для АКБ

Данная схема защиты от глубокого разряда аккумулятора собиралась для защиты кислотно-гелевого 6 вольтового АКБ емкостью 4 ампер-часа, но она может быть настроена и на работу с 12 вольтовыми акб и выше, вплоть до напряжения питания микросхемы ne7555. Прообразом этой платы, была найденная в каком-то журнале и немного измененная. Вместо обычного стабилитрона, был введен регулируемый стабилитрон TL431 который позволяет настраивать напряжение отсечки (отключения нагрузки) в совокупности с подстройкой резистивного делителя R6/R7. С 3-ей ножки микросхемы таймера 555 сигнал стал не засвечивать светодиод, а открывать n-p-n транзистор, который в свою очередь открывает силовой ключ N-channel полевой транзистор. Обратите ваше внимание на характеристики данного транзистора, он должен быть рассчитан на работу с предполагаемыми токами нагрузки, и еще немаловажная деталь- это напряжение открытия затвора. Если вы планируете схему для 6 вольтового акб вам необходим полевой транзистор с напряжением открытия 5 вольт n-channel logic level mosfet. Полевые транзисторы «общего силового» назначения с напряжением открытия 10-20 вольт вам не подойдут, так как при напряжении между затвором и истоком транзистора 5 вольт они будут находиться не в режиме насыщения а в линейном режиме, что приведет к сильному тепловыделению и выходу из строя.

Есть две вещи, которые очень не любят аккумуляторы: перезарядка и переразрядка. И если первую проблему успешно решают современные зарядные устройства (кроме простейших выпрямителей), то с разрядом ниже критического уровня дела обстоят хуже - почти никогда питаемые от батарей устройства не обеспечивают предохранение от сверхразрядки. Не исключается и случайный разряд - когда просто забыли отключить прибор и он разряжается, разряжается... Для решения этой проблемы предлагается к самостоятельной сборке простой низковольтный модуль отключения цепи. Такая схема довольно проста и применима к любой литиевой или свинцово-кислотной аккумуляторной батарее. Естественно порог отключения можно настроить соответственно АКБ.

Схема блока защиты АКБ

Как это работает. Когда кнопка сброса нажата, положительное напряжение поступает на затвор N-канального MOSFET силового транзистора.

Если напряжение на выходе стабилитрона U1 выше 2.5 вольт, а это определяется делителем напряжения, состоящим из R4, R5 и R6, катод U1 оказывается подключен к его аноду, что делает его отрицательным по отношению к его эмиттеру, R2 ограничивает базовый ток до безопасного значения и обеспечивает достаточный ток для работы U1. И транзистор Q1 будет удерживать схему открытой, даже когда вы отпустите кнопку сброса.

Если напряжение на U1, падает ниже 2,5 вольт, стабилитрон отключается и подтягивает положительное напряжение эмиттера R1, выключив его. Резистор R8 также выключает полевой транзистор, приводя к отключению нагрузки. Причём нагрузка не будет включена снова до нажатия кнопки сброс.

Большинство малогабаритных полевых транзисторов рассчитаны только для +/- 20 вольт на затворе - источник напряжения, а это означает, что схема блока подходит для не более чем 12 вольтовых устройств: если требуется рабочее напряжение выше, необходимо будет добавить дополнительные элементы схемы, чтобы сохранить безопасность работы полевика. Пример использования такой схемы: простой контроллер заряда солнечных батарей показанный на фото.


Если требуется более низкое напряжение, чем 9 вольт (или выше 15) - надо будет пересчитывать значения резисторов R4 и R6, чтобы изменить диапазон регулировки.

В схему можно поставить практически любой кремниевый PNP транзистор с номиналом не менее 30 вольт и любой N-канальный MOSFET с номинальным напряжением не менее 30 вольт и током более чем в 3 раза от того, что вы собираетесь коммутировать. Проходное сопротивление доли Ома. Для прототипа использовался F15N05 - 15 ампер, 50 вольт. Для высоких токов подойдут транзисторы IRFZ44 (50 А Макс.) и PSMN2R7-30PL (100 А Макс.). Также можно параллельно соединить несколько однотипных полевых транзисторов по мере необходимости.

Это устройство не должно оставаться подключенным к АКБ долговременно, так как потребляет само несколько миллиампер из-за светодиода и тока потребления U1. В выключенном состоянии его ток потребления ничтожно мал.

Как часто мы забываем выключить нагрузку от аккумулятора… Вы никогда не задумывались над этим вопросом… А ведь часто так бывает вроде работает-работает АКБ, а тут что то высох… Меряем на нем напряжение, а там 9-8В, а то и меньше. Торба, востановить аккумуляторную батарею можно попробовать, но не всегда выходит.
По этому поводу было придумано устройство, которое при разрядке аккумулятора будет отключать от него нагрузку и предотвратит глубокую разрядку АКБ, ведь не секрет, что АКБ боятся глубокого разряда.
Если честно, я думал много раз об устройстве защиты аккумулятора от глубокого разряда, но никак не судьба было все попробовать. И вот на выходных поставил цель сделать небольшую схему защиты

Схема защиты аккумулятора от полного разряда

Кнопки Start и Stop любые без фиксации

Рассмотрим схему. Как видите все построено на двух ОУ включенных в режиме компаратора. Для эксперимента была взята LM358. И так поехали…
Опорное напряжение формируется цепочкой R1-VD1. R1 балластный резистор, VD1 – простейший стабилитрон 5В, можно и на большее-меньшее напряжение. Но не больше и не равное напряжению разряженного АКБ, которое равно кстати 11В.

На первом ОУ был собран компаратор, сравнивающий опорное напряжение с напряжением аккумулятора. Напряжение на 3 ногу подается от АКБ через резисторный делитель, который и создает сравниваемое напряжение. Если на делителе напряжение приравнивается к опорному, на первой ножке появляется положительное напряжение, которое открывает транзисторы, которые поставлены как усилительный каскад, что бы не нагружать выход ОУ.

Настраивается все просто. Подаем на клемму Out — 11В. Именно на эту ногу, потому что на диоде идет падение на 0,6В и потом придется перестраивать схему. Диод нужен, что бы при нажатии на кнопку старт, ток не уходил в нагрузку, а подавал напряжение на саму схему. Подбором резисторов R2R6 ловим момент, когда реле будет отключаться, на 7 ноге пропадет напряжение, а на 5 ноге напряжение должно быть чуть меньше опорного

Когда отстроили первый компаратор, подаем напряжение 12В, как и положено, на клемму Vcc и жмем Start. Схема должна включится и работать без проблем, пока напряжение не упадет до 10,8В, схема должна отключить реле нагрузки.

Нажимаем Стоп, на 5 ноге пропадет напряжение и схема отключится. Кстати C1 лучше не ставить большего наминала, поскольку он будет долго разряжаться и придется держать кнопку STOP дольше. Кстати пока не придумал как заставить схему сразу отключаться, если на самой нагрузке стоит хорошая емкость, которая будет дольше разряжаться, хотя можно и на сам кондер балластный резистор кинуть

На втором Оу было решено собрать индикатор указывающий когда АКБ почти разряжен и схема должна отключиться. Настраивается так же… Подаем на Out – 11,2В и подбором R8R9 добиваемся, что бы загорался красный светодиод
На этом настройка заканчивается и схема полностью работоспособна…

Удачи всем с повторением…
Для безопасной, качественной и надежной зарядки любых типов аккумуляторов, рекомендую

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках , так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20А\ч, АКБ 9А\ч зарядит за 7 часов, 20А\ч — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80А\Ч. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%.
На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки.
Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и СА\СА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Хороший прибор если вам надо заряжать все возможные типы АКБ любых емкостей, аж до 150А\ч

Цена на это чудо 1 625 рублей, доставка бесплатна. На момент написания этих строк количество заказов 23, оценка 4,7 из 5. При заказе не забудьте указать Евровилку

Если какой то товар стал недоступен, пожалуйста напишите в комментарий внизу страницы.
Автор Статьи: Admin-чек

Представленная схема защищает аккумулятор от глубокого разряда (разряд ниже минимально допустимого напряжения) или отключает нагрузку от источника при понижении напряжения. После разряда батареи до минимального напряжения питания устройство отключает нагрузку от батареи. Подходит для защиты батарей, таких как свинцово-кислотных (Pb), NiCd, NiMH, Li-Ion и Li-Pol аккумуляторов.

Пороговое напряжение определяется суммой напряжений на стабилитроне ZD1, б-э- переходе транзистора Т1 и на резисторе R1. Для запуска схемы необходимо нажать кнопку TL1. Пока напряжение на аккумуляторе достаточно велико, T1 и T2 открыты. При уменьшении напряжения, ток прекращает течь через стабилитрон, транзисторы T1 и T2 закрываются. Т2 работает в ключевом режиме, таким образом, нет медленным постепенным закрытия транзистора.

На рис. 2 вы можете увидеть модифицированную схему, где кнопка TL1 позволяет включения и выключения нагрузки. Устройство, таким образом, служит не только в качестве защиты, но также в качестве выключателя питания.

Максимальное входное напряжение зависит от максимального напряжения V GS транзистора Т2. Минимальное входное напряжение зависит от напряжения, при котором Т2 открывается еще надежно. Обычно, для MOSFETов -это примерно 5В, низкое напряжение логические MOSFETы могут работать при более низких напряжениях. Это позволяет применить схему для работы с Li-Ion / Li-Pol , которых имеет мин. напряжение приблизительно 3,4 В. При небольшом напряжении стабилитрон ZD1 может быть заменен комбинацией последовательно соединенных диодов.

Я тестировал схему с IRF3205 и IPB06N03LA в зависимости от Т2. Примечание: желательно последовательно с батареей подключить предохранитель, в противном случае существует риск возгорания в случае неудачи.

Рис. 1 - Принципиальная схема защиты аккумулятора от глубокого разряда (пониженного).

Устройство для защиты 12v аккумуляторов от глубокого разряда и короткого замыкания с автоматическим отключением его выхода от нагрузки.

ХАРАКТЕРИСТИКИ

Напряжение на аккумуляторе, при котором происходит отключение - 10± 0.5V. (У меня вышло ровно 10,5 В) Ток, потребляемый устройством от аккумулятора во включенном состоянии, не более - 1 мА. Ток, потребляемый устройством от аккумулятора в выключенном состоянии, не более - 10 мкА. Максимально допустимый постоянный ток через устройство - 5А.(30 Ватт лампочка 2,45 А - Мосфит без радиатора +50 градусов(комнатная +24))

Максимально допустимый кратковременный (5 сек) ток через устройство - 10А. Время выключения при коротком замыкании на выходе устройства, не более - 100 мкс

ПОРЯДОК РАБОТЫ УСТРОЙСТВА

Подключите устройство между аккумулятором и нагрузкой в следующей последовательности:
- подключите клеммы на проводах, соблюдая полярность (оранж. провод +(красный), к аккумулятору,
- подключите к устройству, соблюдая полярность (плюсовая клемма помечена значком +), клеммы нагрузки.

Для того чтобы на выходе устройства появилось напряжение нужно кратковременно замкнуть минусовой выход на минусовой вход. Если нагрузку кроме аккумулятора питает другой источник, то этого делать не надо.

УСТРОЙСТВО РАБОТАЕТ СЛЕДУЮЩИМ ОБРАЗОМ;

При переходе на питание от аккумулятора, нагрузка разряжает его до напряжения срабатывания устройства защиты (10± 0.5V). При достижении этой величины, устройство отключает аккумулятор от нагрузки, предотвращая дальнейший его разряд. Включение устройства произойдет автоматически при подаче со стороны нагрузки напряжения для заряда аккумулятора.

При коротком замыкании в нагрузке устройство также отключает аккумулятор от нагрузки, Включение его произойдет автоматически, если со стороны нагрузки подать напряжение больше 9,5V. Если такого напряжения нет, то надо кратковременно перемкнуть выходную минусовую клемму устройства и минус аккумулятора. Резисторами R3 и R4 устанавливается порог срабатывания.

Запчасти

1. Монтажная плата(не обязательно, можно навесу)
2. Полевой транзистор любой, подбирайте по А и В. Я взял RFP50N06 N-канал 60В 50А 170 град
3. Резисторы 3 на 10 ком, и 1 на 100 ком
4. Биполярный транзистор КТ361Г
5. Стабилитрон 9.1 В
Доп. Можно клеммы + Микрик для запуска.(Я себе не делал т.к. у меня это будет часть другого устройства)
6. Можно по светодиоду на вход и выход для наглядности(Подбирайте резистор, паяйте в параллельно)

Паяльник+олово+спиртоканифоль+кусачки+проводки+мультиметр+нагрузка и т.д. и т.п. Паял Оловянно-сопельным путём. Травить на плате мне не охота. Лейаута нет. Нагрузка 30 Ватт, Ток 2,45 А полевик греется на +50 град(комнатная +24). Охлаждение не нужно.

Пробывал нагрузку 80 Ватт … ВАХ-ВАХ. Температура за 120 град. Дорожки начали краснеть… Ну сами знаете нужно радиатор, Хорошо пропаянные дорожки.

Похожие публикации