Автомобильный портал

Охранная сигнализация. Схема универсальной сигнализации Охранное устройство для помещения

Хотя ее при желании можно без проблем установить и в .
Схема сигнализации предполагает наличие одной цепи охраны (с задержкой на постановку и сработку), но при небольшой доработке, вполне можно добавить сколько угодно цепей мгновенной сработки (подключить датчики на разбитие стекла, датчики движения, и т.д.). Плюсом данной схемы является возможность независимой регулировки таймеров задержки:

  • Задержка постановки на охрану — регулировка времени от момента включения системы, до момента, когда хозяин квартиры должен покинуть помещение и закрыть дверь, тем самым замыкая цепь охраны.
  • Задержка на включение сирены — регулировка времени от момента открытия двери, до момента включения системой акустического ревуна. То есть время за которое необходимо успеть войти в квартиру и обесточить сигнализацию.

Еще раз подчеркну, таймеры задержек регулируются независимо и не влияют друг на друга , как это, зачастую, встречается в простых охранных системах на логических микросхемах. Принципиальная схема сигнализации изображена на рисунке №1. Схема реализована на 2-х логических микросхемах: К561ЛА7 и К561ЛН2, которые запитаны от 5 Вольтового стабилизатора напряжения. Применение стабилизатора, конечно, сводит на нет преимущества микросхем серии К561 а именно сверх низкий ток потребления, но избавляет от проблемы изменения времени задержек, при снижении . Время задержки постановки на охрану зависит от номинала конденсатора С1, чем больше его емкость, тем длиннее период задержки. Задержка на включение сирены определяется номиналом конденсатора С3, чем больше его емкость, тем больше времени для отключения охранной системы после размыкания контактов охранного шлейфа.

Вкратце о принципе работы сигнализации:

Сначала необходимо рассмотреть участок схемы который непосредственно связан с охранным шлейфом.

Нас интересует один из логических элементов микросхемы DD1 К561ЛА7 который отвечает за сработку системы, а именно передачу импульса для мгновенной зарядки конденсатора C2 емкостью 2200мкФ (который определяет время работы сирены в случае если дверь после несанкционированного проникновения будет сразу закрыта, но сигнализация останется включена). Рассмотрим процессы происходящие после сработки системы (т.е. после мгновенной зарядки конденсатора С2 2200мкФ) о том в каком случае происходит такая сработка будет сказано позже, что бы не запутаться в происходящем. Итак, из энергии С2 2200мкФ через диод VD2 и резистор R5 620k происходит медленный заряд конденсатора С3 200мкФ. Этот этап является задержкой на включение сирены, как уже говорилось, чем выше емкость С3, тем больше времени пройдет перед включением сирены. Итак, С3 медленно заряжается, и в определенный момент, напряжение на конденсаторе доходит до значения (порядка 3 Вольт), при котором происходит сработка инверторов, выполненных на микросхеме DD2 К561ЛН2. После двухкратной инверсии сигнала, с вывода №4 микросхемы DD2 поступает напряжение питания на токоограничительный резистор ключа, выполненного на биполярном транзисторе КТ819Г. Данный ключ «проключает землю», то есть во включенном состоянии пропускает через себя ток и включает сирену.

Нам осталось разобраться как работает задержка постановки на охрану и при каких обстоятельствах произойдет включение сирены. Итак, при включении охранной системы происходит медленный заряд конденсатора С1, определяющего время задержки постановки на охрану. При достижении напряжения на конденсаторе С1 выше порога сработки (порядка 3 вольт), состояние выхода первого логического элемента микросхемы DD1 К561ЛА7 (ножка 3 микросхемы) поменяет свое состояние: сразу при включении на на этом выводе микросхемы будет напряжение равное напряжению питания, т.е. 5 Вольт, а при заряженном конденсаторе С1 (по окончании времени задержки на постановку) на данной ножке микросхемы напряжение станет равным нолю. Идем дальше по схеме, сигнал поступает на второй логический элемент микросхемы DD1 на котором происходит его инвертирование. Попросту говоря если на входах элемента №6,№5 будет ноль, то на выходе элемента (лапка №4) появится . И на оборот, если на обоих входах (№6,№5) элемента появится полное напряжение питания (5Вольт) , то на выходе элемента напряжение станет равным нолю. Для сброса таймеров (в случае когда, вы по каким-либо причинам не успеваете выйти и запереть за собой дверь) необходимо нажать на несколько секунд строенный переключатель без фиксации положения (кнопку) который произведет разряд всех время-задающих конденсаторов через номиналом в 5 Ом. Производить сброс таймеров также необходимо после каждого выключения охранной сигнализации . Можно объединить кнопку отключения питания и кнопку сброса воедино, если найдете подходящий переключатель с фиксацией положения и возможностью комутации 4 пар контактов. Остается последний непоясненный вопрос.

Мы опять возвращаемся к рассмотрению логического элемента №3 микросхемы DD1 К561ЛА7. Как уже было сказано выше инверсия сигнала произойдет когда на обоих входах логического элемента появится напряжение питания. То есть, если на входе №9 и входе №8 будет +5 Вольт, на выходе данного элемента (ножка №10) напряжение станет равным нолю. С выхода №10 сигнал «ноль» будет подан на точно такой же элемент, который так же инвертирует сигнал и на выходе последнего логического элемента микросхемы DD1 К561ЛА7, то есть на ножке №11 появится напряжение +5 Вольт, которое произведет через диод VD1 мгновенную зарядку конденсатора 2200мкФ. Что происходит далее, было описано выше.

Итак, самый главный фрагмент описания действия сигнализации!

Охранный шлейф является нормально замкнутым , то есть в режиме «под охраной» кнопка замкнута, а в режиме открытия двери цепь размыкается. Что это нам дает, применимо к схеме? Сигнал, на сработку сирены, через заданное количество секунд будет подан лишь в том случае, когда на обоих входах станет напряжение равным 4-5 Вольт. Это может произойти только лишь в случае, когда охранный шлейф разомкнут, (в этом случае на вход №8 через резистор R11 номиналом 100к будет подано напряжение 5 Вольт). И когда на входе №9 появится напряжение 5 Вольт, а это произойдет после окончания времени задержки постановки на охрану. Обязательно еще посмотрите
PS/ Я старался изложить принцип действия самодельной охранной сигнализации максимально лаконично и доступно, для понимания начинающим любителям самоделок. Если улучшите эту модель – пришлите, пожалуйста фото и схему Вашего варианта охранной сигнализации, я буду очень вам признателен и размещу её в этом разделе. Заранее спасибо.

Вы также можете прислать любые свои самодельные кострукции, и я с удовольствием их размещу на этом сайте с указанием Вашего авторства! samodelkainfo{собачка} yandex.ru

Особенность этой сигнализации в том, что её практически не меняя схемы можно установить на автомобиль, входную дверь помещения, сейф, и даже на шкаф. Разница только в том. что за нагрузка будет на выходе и какой источник питания. А модификация производится переключением миниатюрной перемычки в разъеме, установленном на плате сигнализации. Нагрузкой сигнализации может служить 12-вольтовая автомобильная сирена, промежуточное реле или миниатюрная покупная или самодельная сирена.

А функции датчика может выполнять пара геркон-магнит, замыкающий или размыкающий выключатель, автомобильные контактные датчики, разрывной шлейф, контактная закладка.

Принципиальная схема базового варианта показана на рисунке 1. Такая сигнализация может работать с одной группой замыкающих датчиков (SD2) или одной группой размыкающих датчиков (SD1). Выбор типа датчиков осуществляется перестановкой перемычки N1 (на схеме она показана в положении работы с замыкающим датчиком SD2, а пунктиром, - для работы с размыкающим SD1).

Если на охраняемом объекте несколько замыкающих датчиков, то их нужно включить параллельно друг другу, а если датчики размыкающие, - последовательно.

Включают сигнализацию выключателем S1, через который подается питание. Индицирует факт включения светодиод HL1 постоянного свечения После включения отрабатывается выдержка в несколько секунд, в течение которой сигнализация реагирует на срабатывание датчика коротким звуковым сигналом. Величина этой выдержки определяется параметрами RC-цепи R3-C2.

Выдержка нужна для выхода из объекта охраны, закрывания дверей и проверки работоспособности датчиков. По завершению выдержки сигнализация переходит в режим охраны, что индицируется включением мигающего светодиода HL2 Диод VD4 и резистор R5 перестают шунтировать R6 и продолжительность сигнализации. зависящая от быстроты разрядки С3, увеличивается.

Теперь, при срабатывании датчика на выходе D1.1 появляется положительный импульс, длительность которого зависит от параметров цепи R2-C1. Этот импульс через диод VD3 и токоограничивающее сопротивление R4 заряжает конденсатор С3 до напряжения логической единицы. На выходе D1.2 формируется отрицательный импульс, продолжительность которого зависит от быстроты разрядки конденсатора С3.

По фронту этого импульса, цепью C6-R8 формируется короткий импульс, который приводит к кратковременному появлению логической единицы на выходе D1 3. А это приводит к кратковременному включению сирены BF1. Раздается короткий предупредительный сигнал, после которого у вас есть несколько секунд на отключение сигнализации выключателем S1, который должен быть размещен внутри охраняемого объекта скрытно.

Продолжительность этой задержки зависит от параметров цепи R7-C4. Если сигнализация не будет выключена в течение этой задержки, то включается продолжительный режим сигнализации (сирена звучит примерно 50 секунд).

Затем схема возвращается в охранный режим. Конденсатор С1 необходим для исключения зацикливания схемы в том случае, когда после вторжения на объект датчик остается в сработавшем положении

При установке на автомобиле в качестве устройства оповещения BF1 используется стандартная блок-сирена для автомобильных сигнализации промышленного производства. В этом случае питание от автомобильного аккумулятора, а датчик удобнее выбрать замыкающий, потому что именно такие дверные выключатели освещения, а так же, автоматические выключатели света под капотом и в багажнике.

Если эти датчики не допустимо включать параллельно, их можно развязать между собой диодами типа КД522. Подключив эти диоды анодами к аноду VD2, а их катоды соединить с датчиками.

При охране помещения удобнее применить размыкающий датчик, потому что, именно такие стандартные герконовые датчики, устанавливаемые на двери. Если же датчик самодельный, то выбор типа зависит от его конструкции. Тип сирены так же зависит от многих факторов. Можно использовать такую же автомобильную сирену, или через промежуточное реле подключить более мощную сирену, питающуюся от электросети, либо кнопку вызова охраны.

Впрочем, можно дополнительно сирене подключить реле для включения кнопки вызова охраны. В таком случае, обмотку реле подключают параллельно сирене. Чтобы не повредить транзисторы выходного ключа (VT2 и VT3) выбросом самоиндукции необходимо параллельно обмотке реле включить любой диод в обратном направлении. Тип реле зависит от нагрузки, но обмотка должна быть рассчитана на напряжение 8-14V. В таких же пределах должно быть и напряжение питания сигнализации.

Рис.2
Детали размещены на печатной плате с односторонним расположением дорожек. Схема разводки и схема расположения деталей даны на рисунке 2.

Способ изготовления платы, - любой доступный. Монтаж неплотный, поэтому печать можно нарисовать даже при помощи заточенной спички, по мере надобности макаемой в битумный лак или нитроэмаль.

Впрочем, монтаж можно выполнить и на макетной печатной плате или вообще без платы, приклеив микросхемы «вверх ногами» на какую-то основу, и выполнив соединения монтажными проводниками и выводами деталей.

Микросхему К561ТЛ1 можно заменить аналогом серии К1561 или импортной CD4093. Микросхема К561ТЛ1 содержит четыре элемента «2И-НЕ», с входами, выполненными по схеме триггера Шмитта Цоколевка и логика работы почти как у К561ЛА7, поэтому можно попробовать использовать вместо К561ТЛ1 микросхему К561ЛА7, но только в крайнем случае, потому что у элементов К561ЛА7 нет на входах триггеров Шмитта, и схема, скорее всего, будет работать менее устойчиво и выдержки будут отрабатываться не так четко.

Транзисторы КТ315 и КТ815 заменимы любыми другими транзисторами общего применения анапогичной мощности. Диоды так же можно заменить любыми аналогами. Светодиод НИ - любой индикаторный с постоянным свечением, a HL2 - мигающий. Схема, показанная на рисунке 1 является базовой. В ней используется только одна микросхема малой степени интеграции, отсюда и ограниченные функции.

Усложнив ее добавлением еще одной такой же микросхемы (рис. 3) можно сделать более универсальную сигнализацию. В схеме, показанной на рисунке 3, есть два входных канала (дополнительный канал выполнен на D2.1). Это позволяет работать одновременно с двумя типами датчиков, - на одном канале может быть система замыкающих датчиков, а на втором, - размыкающих

При включении S2, напряжение питания подаётся на схему, конденсатор С3 начинает заряжаться и на входе 1 микросхемы кратковременно появляется логический 0, на выводе 4 тоже 0 и триггер устанавливается в дежурное состояние. В таком состоянии он будет находится секунд 20, пока не зарядится конденсатор С1. Если за это время дверь квартиры не закрыли - сработает сирена с задержкой 15 секунд. При открывании двери посторонним человеком геркон разомкнётся и на входе микросхемы 9 появится логическая единица, а на выходе 10 логический 0 и триггер переключится. На выходе 4 появится логическая 1 и начнётся заряд конденсатора С2. Когда конденсатор зарядится, на входе микросхемы 12 и 13 появится логическая 1, а на выходе 11 логический 0, транзистор VT3 откроется и откроет транзистор VT1. Зазвучит сирена. Чтобы сирена не сработала, надо в течении 15 секунд после открытия двери выключить S2.

Сирену надо установить в любом труднодоступном месте для посторонних лиц. Выключатель S2 в потайном месте. Геркон с магнитом установить на двери. Светодиод снаружи помещения, он показывает, что сигнализация включена. Контакт геркона показан при открытой двери. Геркон можно вынуть из реле рэс-55.перемычку между контактами 1,2 микросхемы убрать.

Ток потребления схемой около 15 мА. Поэтому сигнализация долго может находиться включённой в дежурном режиме. Питание от аккумулятора обеспечивает работу сигнализации независимо от электросети.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Логическая ИС

К561ЛА7

1 В блокнот
VT1 Биполярный транзистор

КТ829А

1 В блокнот
VT3 Биполярный транзистор

КТ361Г

1 В блокнот
VD1, VD2 Диод

КД522Б

2 В блокнот
С1 100 мкФ 15 В 1 В блокнот
С2 Электролитический конденсатор 68 мкФ 15 В 1 В блокнот
С3 Конденсатор 0.068 мкФ 1 В блокнот
R1-R3, R5 Резистор

100 кОм

4 В блокнот
R4 Резистор

33 кОм

1 В блокнот
R6 Резистор

1 кОм

1 В блокнот
HL1 Светодиод

АЛ307Б

1

Простые радиосхемы начинающим

В этой статье мы рассмотрим несколько простых электронных устройств на основе логических микросхем К561ЛА7 и К176ЛА7. В принципе эти микросхемы практически одинаковые и имеют одинаковое предназначение. Несмотря на небольшую разницу в неокторых параметрах они практически взаимозаменяемы.

Коротко о микросхеме К561ЛА7

Микросхемы К561ЛА7 и К176ЛА7 представляют собою четыре элемента 2И-НЕ. Конструктивно выполнены они в пластмассовом корпусе черного цвета с 14-ю выводами. Первый вывод микросхемы обозначен в виде метки (так называемый ключ) на корпусе. Это может быть или точка или выемка. Внешний вид микросхем и цоколевка выводов показаны на рисунках.

Питание микросхем составляет 9 Вольт, питающее напряжение подается на выводы: 7 вывод- "общий", 14 вывод- "+".
При монтаже микросхем необходимо быть внимательным с цоколевкой- случайная установка микросхемы "наизнанку" выводит ее из строя. Пайку микросхем желательно производить паяльником мощностью не более 25 Ватт.

Напомним что эти микросхемы назвали "логическими" поэтому что они имеют всего лишь два состояния- или "логический ноль" или "логическая единица". Причем при уровне "единица" подразумевается напряжение близкое к напряжению питания. Следовательно- при уменьшении напряжения питания самой микросхемы и уровень "Логической единицы" будет меньше.
Давайте проведем небольшой эксперимент (рисунок 3)

Сначала превратим элемент микросхемы 2И-НЕ просто в НЕ, соединив для этого входы. На выход микросхемы подключим светодиод, а на вход будем подавать напряжение через переменный резистор, контролируя при этом напряжение. Для того чтобы светодиод загорелся необходимо на выходе микросхемы (это вывод 3) получить напряжение равное логической "1". Контролировать напряжение можно при помощи любого мультиметра включив его в режим измерений постоянного напряжения (на схеме это PA1).
А вот с питанием немного поиграем- сначала подключим одну батарейку 4,5 Вольта.Так как микросхема является инвертором, следовательно для того чтобы получить на выходе микросхемы "1" необходимо наоборот на вход микросхемы подать логический "0". Поэтому начнем наш эксперимент с логической "1"- то есть движок резистора должен быть в верхнем положении. Вращая движок переменного резистора дождемся момента когда загорится светодиод. Напряжение на движке переменного резистора, а следовательно и на входе микросхемы будет примерно около 2,5 Вольт.
Если подключить вторую батарейку, то мы получим уже 9 Вольт, и светодиод у нас в этом случае загорится при напряжении на входе примерно 4 Вольта.

Здесь, кстати, необходимо дать небольшое разъяснение : вполне возможно что в Вашем эксперименте могут быть другие результаты отличные от вышеуказанных. Ничего удивительного в этом нет: во первых двух совершенно одинаковых микросхем не бывает и параметры у них в любом случае будут отличаться, во-вторых логическая микросхема может любое понижение входного сигнала распознать как логический "0", а в нашем случае мы понизили входное напряжение в два раза, ну и в-третьих в данном эксперименте мы пытается заставить работать цифровую микросхему в аналоговом режиме (то есть управляющий сигнал у нас проходит плавно) а микросхема, в свою очередь работает как ей положено- при достижении определенного порога перебрасывает логическое состояние мгновенно. Но ведь и этот самый порог у различных микросхем может отличаться.
Впрочем цель нашего эксперимента была простая- нам необходимо было доказать что логические уровни напрямую зависят от питающего напряжения.
Еще один нюанс : такое возможно лишь с микросхемами серии КМОП которые не очень критичны к питающему напряжению. С микросхемами серии ТТЛ дела обстоят иначе- питание у них играет огромную роль и при эксплуатации допускается отклонение не более чем в 5%

Ну вот, краткое знакомство закончилось, переходим к практике...

Простое реле времени

Схема устройства показана на рисунке 4. Элемент микросхемы здесь включен так-же как и в эксперименте выше: входы замкнуты. Пока кнопка кнопка S1 разомкнута, конденсатор С1 находится в заряженном состоянии и ток через него не протекает. Однако вход микросхемы подключен и к "общему" проводу (через резистор R1) и поэтому на входе микросхемы будет присутствовать логический "0". Так как элемент микросхемы является инвертором то значит на выходе микросхемы получится логическая "1" и светодиод будет гореть.
Замыкаем кнопку. На входе микросхемы появится логическая "1" и, следовательно, на выходе будет "0", светодиод погаснет. Но при замыкании кнопки и конденсатор С1 мгновенно разрядится. А это значит что после того как мы отпустили кнопку в конденсаторе начнется процесс заряда и пока он будет продолжаться через него будет протекать электрический ток поддерживая уровень логической "1" на входе микросхемы. То есть получится что светодиод не загорится до тем пор пока конденсатор С1 не зарядится. Время заряда конденсатора можно изменять подбором емкости конденсатора или изменением сопротивления резистора R1.

Схема вторая

На первый взгляд практически то же самое что и предыдущая, но кнопка с времязадающим конденсатором включена немного по-другому. И работать она будет тоже немного иначе- в ждущем режиме светодиод не горит, при замыкании кнопки светодиод загорится сразу, а погаснет уже с задержкой.

Простая мигалка

Если включить микросхему как показано на рисунке то мы получим генератор световых импульсов. По сути это самый простой мультивибратор, принцип работы которого был подробно описан на этой странице.
Частота импульсов регулируется резистором R1 (можно даже установить переменный) и конденсатором С1.

Управляемая мигалка

Давайте немного изменим схему мигалки (которая была выше на рисунке 6) введя в нее цепь из уже знакомого нам реле времени- кнопку S1 и конденсатор С2.

Что у нас получится: при замкнутой кнопке S1, на входе элемента D1.1 будет логический "0". Это элемент 2И-НЕ и поэтому не важно что у него творится на втором входе- на выходе в любом случае будет "1".
Эта самая "1" поступит на вход второго элемента (который D1.2) и значит на выходе этого элемента будет прочно сидеть логический "0". А раз так то светодиод загорится и будет гореть постоянно.
Как только мы отпустили кнопку S1, начинает заряд конденсатора С2. В течение времени заряда через него будет протекать ток удерживая уровень логического "0" на выводе 2 микросхемы. Как только конденсатор зарядится, ток через него прекратится, мультивибратор начнет работать в своем обычном режиме- светодиод будет мигать.
На следующей схеме также введена эта-же цепочка но включена она уже иначе: при нажатии на кнопку светодиод начнет мигать а по истечение некоторого времени станет гореть постоянно.

Простая пищалка

В этой схеме ничего особо необычного нет: все мы знаем что если к выходу мультивибратора подключить динамик или наушник то он начнет издавать прерывистые звуки. На малых частотах это будет просто "тикание" а на более высоких частотах это будет писк.
Для эксперимента больший интерес представляет схема показанные ниже:

Здесь опять же знакомое нам реле времени- замыкаем кнопку S1, размыкаем ее и через некоторое время устройство начинает пищать.

Несложное охранное устройство, извещающее о намерении кого-нибудь своровать ваши вещи, можно собрать всего на одной логической микросхеме (рис. 20.6). В устройстве используется шлейфовый датчик, при обрыве которого начинает работать генератор прямоугольных импульсов, собранный на логических элементах DD1.1 и DD1.2 микросхемы K561ЛA7. Генератор выдает импульсы с частотой 2…3 Гц.

Частота импульсов тонального генератора составляет 1 кГц (ft = 1/2R6 . СЗ). Импульсы тонального генератора поступают на пьезокерамический излучатель НА1, который преобразует их в звук. В качестве источника питания GB1 можно использовать литиевую батарею 2БЛИК-1 или 4 элемента типа 316, что приведет к увеличению габаритов устройства. В устройстве нет выключателя, так как в дежурном режиме устройство потребляет ток всего 2 мкА. В режиме тревожной сигнализации, когда шлейф оборван и звуко-излучатель издает мощный сигнал, ток составляет 0,5…1 мА. Для увеличения мощности звука, следует подобрать сопротивление резистора R6.

Детали

В охранном устройстве используются постоянные резисторы типа МЛТ-0,125, конденсаторы С1…СЗ — КМ6, С4 — оксидный К50-35. Шлейфный датчик представляет собой сложенный вдвое обмоточный провод ПЭВ-2 или ПЭВ-3 00,07…0,1 мм длиной 0,5…1 м. Концы такого куска провода присоединяют к двухконтактному разъему, который необходим для подключения к гнездам устройства XI. Необходимо сделать несколько таких проводных датчиков, так как оборванные шлейфы не имеет смысла ремонтировать. Для хранения датчиков желательно использовать челнок-мотальце подобно тем, что используют рыбаки для хранения лески. Детали устройства монтируют на печатной плате из двухстороннего фольгированного стеклотекстолита толщиной 1 мм. На одной стороне платы фольга используется как общий минусовой провод источника питания. В связи с чем вокруг отверстий, через которые проходят выводы деталей, не связанные с общим проводом, необходимо снять фольгу, сделав выборки сверлом 01…2 мм. Рисунок печатной платы и распайка деталей на ней показаны на рис. 20.7. Места припайки деталей к общему проводу платы показаны квадратами. Примерный монтаж деталей на двухсторонней плате показан на рис. 20.8. После распайки всех деталей на плате припаивают проводники к излучателю и батарее. Все детали устройства помещают в пластмассовый корпус размерами 48x32x17 мм. Собранный из исправных деталей и без ошибок «сторож» налаживания не требует и сразу может быть использован по назначению. Для этой цели вещи, которые требуют охраны, прошивают или обвязывают шлейфом. Шлейф подключают к гнездам X1 устройства и охрана вещей обеспечена.

Похожие публикации