Автомобильный портал

Генераторы низких частот на микросхемах. Генератор сигналов: функциональный генератор своими руками Универсальный нч генератор своими руками

Продолжая тему электронных конструкторов я хочу и в этот раз рассказать о одном из устройств для пополнения арсенала измерительных приборов начинающего радиолюбителя.
Правда измерительным это устройство не назовешь, но то что оно помогает при измерениях это однозначно.

Довольно часто радиолюбителю, да и не только, приходится сталкиваться с необходимостью проверки разных электронных устройств. Это бывает как на этапе отладки, так и на этапе ремонта.
Для проверки бывает необходимо проследить прохождение сигнала по разным цепям устройства, но само устройство не всегда позволяет это сделать без внешних источников сигнала.
Например при настройке/проверке многокаскадного НЧ усилителя мощности.

Для начала стоит немного объяснить о чем пойдет речь в данном обзоре.
Рассказать я хочу о конструкторе, позволяющим собрать генератор сигналов.

Генераторы бывают разные, например ниже тоже генераторы:)

Но собирать мы будем генератор сигналов. Я много лет пользуюсь стареньким аналоговым генератором. В плане генерации синусоидальных сигналов он очень хорош, диапазон частот 10-100000Гц, но имеет большие габариты и не умеет выдавать сигналы других форм.
В данном случае же собирать будем DDS генератор сигналов.
DDS это или на русском - схема прямого цифрового синтеза.
Данное устройство может формировать сигналы произвольной формы и частоты используя в качестве задающего внутренний генератор с одной частотой.
Преимущества данного типа генераторов в том, что можно иметь большой диапазон перестройки с очень мелким шагом и при необходимости иметь возможность формирования сигналов сложных форм.

Как всегда, для начала, немного об упаковке.
Помимо стандартной упаковки, конструктор был упакован в белый плотный конверт.
Все компоненты сами находились в антистатическом пакете с защелкой (довольно полезная в хозяйстве радиолюбителя вещь:))

Внутри упаковки компоненты были просто насыпом, и при распаковке выглядели примерно так.

Дисплей был обернут пупырчатым полиэтиленом. Примерно с год назад я уже делал такого дисплея с применением, потому останавливаться на нем не буду, скажу лишь что доехал он без происшествий.
В комплекте также присутствовали два BNC разъема, но более простой конструкции чем в обзоре осциллографа.

Отдельно на небольшом кусочке вспененного полиэтилена были микросхемы и панельки для них.
В устройстве применен микроконтроллер ATmega16 фирмы Atmel.
Иногда люди путают названия, называя микроконтроллер процессором. На самом деле это разные вещи.
Процессор это по сути просто вычислитель, микроконтроллер же в своем составе содержит кроме процессора ОЗУ и ПЗУ, и также могут присутствовать различные периферийные устройства, ЦАП, АЦП, ШИМ контроллер, компараторы и т.п.

Вторая микросхема - Сдвоенный операционный усилитель LM358. Самый обычный, массовый, операционный усилитель.

Сначала разложим весь комплект и посмотрим что же нам дали.
Печатная плата
Дисплей 1602
Два BNC разъема
Два переменных резистора и один подстроечный
Кварцевый резонатор
Резисторы и конденсаторы
Микросхемы
Шесть кнопок
Разные разъемы и крепеж

Печатная плата с двухсторонней печатью, на верхней стороне нанесена маркировка элементов.
Так как принципиальная схема в комплект не входит, то на плату нанесены не позиционные обозначения элементов, а их номиналы. Т.е. все собрать можно и без схемы.

Металлизация выполнена качественно, замечаний у меня не возникло, покрытие контактных площадок отличное, паяется легко.

Переходы между сторонами печати сделаны двойными.
Почему сделано именно так, а не как обычно, я не знаю, но это только добавляет надежности.

Сначала по печатной плате я начал чертить принципиальную схему. Но уже в процессе работы я подумал, что наверняка при создании данного конструктора использовалась какая нибудь уже известная схема.
Так и оказалось, поиск в интернет вывел меня на данного устройства.
По ссылке можно найти, схему, печатную плату и исходники с прошивкой.
Но я все равно решил дочертить схему в именно том виде как она есть и могу сказать, что она на 100% соответствует исходному варианту. Разработчики конструктора просто разработали свой вариант печатной платы. Это означает, что если существуют альтернативные прошивки данного прибора, то они будут работать и здесь.
Есть замечание к схемотехнике, выход HS взят прямо с вывода процессора, никаких защит нет, потому есть шанс случайно сжечь этот выход:(

Раз уж рассказывать, то стоит описать функциональные узлы данной схемы и расписать некоторые из них более расширенно.
Я сделал цветной вариант принципиальной схемы, на котором цветом выделил основные узлы.
Мне тяжело подобрать названия цветам, потом буду описывать как смогу:)
Фиолетовый слева - узел первоначального сброса и принудительного при помощи кнопки.
При подаче питания конденсатор С1 разряжен, благодаря чему на выводе Сброс процессора будет низкий уровень, по мере заряда конденсатора через резистор R14 напряжение на входе Сброс поднимется и процессор начнет работу.
Зеленый - Кнопки переключения режимов работы
Светло фиолетовый? - Дисплей 1602, резистор ограничения тока подсветки и подстроечный резистор регулировки контрастности.
Красный - узел усилителя сигнала и регулировки сдвига относительно нуля (ближе к концу обзора показано что он делает)
Синий - ЦАП. Цифро Аналоговый Преобразователь. Собран ЦАП по схеме , это один из самых простых вариантов ЦАП. В данном случае применен 8 бит ЦАП, так как используются все выводы одного порта микроконтроллера. Изменяя код на выводах процессора можно получить 256 уровней напряжения (8 бит). Состоит данный ЦАП из набора резисторов двух номиналов, отличающихся друг от друга в 2 раза, от этого и пошло название, состоящее из двух частей R и 2R.
Преимущества такого решения - большая скорость при копеечной стоимости, резисторы лучше применять точные. Мы с товарищем применяли такой принцип но для АЦП, выбор точных резисторов был невелик, потому мы использовали немного другой принцип, ставили все резисторы одного номинала, но там где надо 2R, применяли 2 последовательно включенных резистора.
Такой принцип Цифро аналогового преобразования был в одной из первых «звуковых карт» - . Там была также R2R матрица, подключаемая к LPT порту.
Как я выше писал, в данном конструкторе ЦАП имеет разрешение 8 бит, или 256 уровней сигнала, для простого прибора этого более чем достаточно.

На странице автора кроме схемы, прошивки и т.п. обнаружилась блок-схема данного прибора.
По ней более понятная связ узлов.

С основной частью описания закончили, расширенная будет далее по тексту, а мы перейдем непосредственно к сборке.
Как и в прошлых примерах начать я решил с резисторов.
В данном конструкторе резисторов много, но номиналов всего несколько.
Основное количество резисторов имеют всего два номинала, 20к и 10к и почти все задействованы в R2R матрице.
Чтобы немного облегчить сборку, скажу что можно даже не определять их сопротивелние, просто 20к резисторов 9 штук, а 10к резисторов соответственно 8:)

В этот раз я применил несколько другую технологию монтажа. мне она нравится меньше, чем предыдущие, но также имеет право на жизнь. Такая технология в некоторых случаяюх ускоряет монтаж, особенно на большом количестве одинаковых элементов.
В данном случае выводы резисторов формуются также как и раньше, после этого на плату устанавливается сначала все резисторы одного номинала, потом второго, получаются две такие линейки компонентов.

С обратной стороны выводы немного загибаются, но несильно, главное чтобы элементы не выпали, и плата кладется на стол выводами вверх.

Дальше берем припой в одну руку, паяльник в другую и пропаиваем все заполненные контактные площадки.
Сильно усердствовать с количеством компонентов не стоит, так как если набить так сразу всю плату, то в этом «лесу» можно и заблудиться:)

В конце обкусываем торчащие выводы компонентов впритык к припою. Бокорезами можно захватывать сразу несколько выводов (4-5-6 штук за один раз).
Лично я такой способ монтажа не очень приветствую и показал его просто ради демонстрации различных вариантов сборки.
Из недостатков такого способа:
После обрезки получаются острые торчащие кончики
Если компоненты стоят не в ряд, то легко получается каша из выводов, где все начинает путаться и это только тормозит работу.

Из достоинств:
Высокая скорость монтажа однотипных компонентов установленных в один - два ряда
Так как выводы сильно не загибаются, то облегчается демонтаж компонента.

Такой способ монтажа можно часто встретить в дешевых компьютерных блоках питания, правда там выводы не обкусывают, а срезают чем то типа режущего диска.

После монтажа основного количества резисторов у нас останется несколько штук разного номинала.
С парой понятно, это два резистора 100к.
Три последних резистора это -
коричневый - красный - черный - красный - коричневый - 12к
красный - красный - черный - черный - коричневый - 220 Ом.
коричневый - черный - черный - черный - коричневый - 100 Ом.

Запаиваем последние резисторы, плата после этого должна выглядеть примерно так.

Резисторы с цветовой маркировкой вещь хорошая, но иногда возникает путаница с тем, откуда считать начало маркировки.
И если с резисторами, где маркировка состоит из четырех полосок, проблем обычно не возникает, так как последняя полоска чаще либо серебряная либо золотая, то с резисторами где маркировка из пяти полос, могут возникнуть проблемы.
Дело в том, что последняя полоса может иметь цвет как у полосок означающих номинал.

Для облегчения распознавания маркировки, последняя полоса должна отстоять от остальных, но это в идеальном случае. В реальной же жизни все бывает совсем не так как задумывалось и полоски идут в ряд на одном расстоянии друг от друга.
К сожалению в таком случае помочь может либо мультиметр, либо просто логика (в случае сборки устройства из набора), когда просто убираются все известные номиналы, а уже по оставшимся можно понять что за номинал перед нами.
Для примера пара фото вариантов маркировки резисторов в этом наборе.
1. На двух соседних резисторов попалась «зеркальная» маркировка, где не имеет значения откуда читать номинал:)
2. Резисторы на 100к, видно что последняя полоска стоит чуть дальше от основных (на обоих фото номинал читается слева - направо).

Ладно, с резисторами и их сложностями в маркировке закончили, перейдем к более простым вещам.
Конденсаторов в этом наборе всего четыре, при этом они парные, т.е. всего два номинала по две штуки каждого.
Также в комплекте дали кварцевый резонатор на 16 МГц.

О конденсаторах и кварцевом резонаторе я рассказывал в прошлом обзоре, потому просто покажу куда они должны устанавливаться.
Видимо изначально все конденсаторы задумывались одного типа, но конденсаторы на 22 пФ заменили небольшими дисковыми. Дело в том, что место на плате рассчитано под расстояние между выводами 5мм, а мелкие дисковые имеют всего 2.5мм, потому придется выводы им немного разогнуть. Разгибать придется около корпуса (благо выводы мягкие), так как из-за того что над ними стоит процессор, то необходимо получить минимальную высоту над платой.

В комплекте к микросхемам дали пару панелек и несколько разъемов.
На следующем этапе они нам и понадобятся, а кроме них возьмем длинный разъем (мама) и четырехконтактного «папу» (на фото не попал).

Панельки для установки микросхем дали самые обычные, хотя если сравнивать с панельками времен СССР, то шик.
На самом деле, как показывает практика, такие панельки в реальной жизни служат дольше самого прибора.
На панельках присутствует ключ, небольшой вырез на одной из коротких сторон. Собственно самой панельке все равно как вы ее поставите, просто потом по вырезу удобнее ориентироваться при установке микросхем.

При установке панелек устанавливаем их также как сделано обозначение на печатной плате.

После установки панелек плата начинает приобретать некоторый вид.

Управление прибором производится при помощи шести кнопок и двух переменных резисторов.
В оригинале прибора использовалось пять кнопок, шестую добавил разработчик конструктора, она выполняет функцию сброса. Если честно, то я не совсем понимаю пока ее смысл в реальном применении так как за все время тестов она мне ни разу не понадобилась.

Выше я писал что в комплекте дали два переменных резистора, также в комплекте еще был подстроечный резистор. Немного расскажу про эти компоненты.
Переменные резисторы предназначены для оперативного изменения сопротивления, кроме номинала имеют еще маркировку функциональной характеристики.
Функциональная характеристика это то, как будет меняться сопротивление резистора при повороте ручки.
Существует три основные характеристики:
А (в импортном варианте В) - линейная, изменение сопротивления линейно зависит от угла поворота. Такие резисторы, например, удобно применять в узлах регулировки напряжения БП.
Б (в импортном варианте С) - логарифмическая, сопротивление сначала меняется резко, а ближе к середине более плавно.
В (в импортном варианте A) - обратно-логарифмическая, сопротивление сначала меняется плавно, ближе к середине более резко. Такие резисторы обычно применяют в регуляторах громкости.
Дополнительный тип - W, производится только в импортном варианте. S-образная характеристика регулировки, гибрид логарифмического и обратно-логарифмического. Если честно, то я не знаю где такие применяются.
Кому интересно, могут почитать подробнее.
Кстати мне попадались импортные переменные резисторы у которых буква регулировочной характеристики совпадала с нашей. Например современный импортный переменный резистор имеющий линейную характеристику и букву А в обозначении. Если есть сомнения, то лучше искать дополнительную информацию на сайте.
В комплекте к конструктору дали два переменных резистора, причем маркировку имел только один:(

Также в комплекте был один подстроечный резистор. по своей сути это то же самое что переменный, только он не рассчитан на оперативную регулировку, а скорее - подстроил и забыл.
Такие резисторы обычно имеют шлиц под отвертку, а не ручку, и только линейную характеристику изменения сопротивления (по крайней мере другие мне не попадались).

Запаиваем резисторы и кнопки и переходим к BNC разъемам.
Если планируется использовать устройство в корпусе, то возможно стоит купить кнопки с более длинным штоком, чтобы не наращивать те, что дали в комплекте, так будет удобнее.
А вот переменные резисторы я бы вынес на проводах, так как расстояние между ними очень маленькое и пользоваться в таком виде будет неудобно.

BNC разъемы хоть и попроще, чем в обзоре осциллографа, но мне понравились больше.
Ключевое - их легче паять, что немаловажно для начинающего.
Но появилось и замечание, конструкторы так близко поставили разъемы на плате, что закрутить две гайки невозможно в принципе, всегда одна будет сверху другой.
Вообще в реальной жизни редко когда необходимы оба разъема сразу, но если бы конструкторы раздвинули их хотя бы на пару миллиметров, то было бы гораздо лучше.

Собственно пайка основной платы завершена, теперь можно установить на свое место операционный усилитель и микроконтроллер.

Перед установкой я обычно немного изгибаю выводы так, чтобы они были ближе к центру микросхемы. Делается это очень просто, берется микросхема двумя руками за короткие стороны и прижимается вертикально стороной с выводами к ровному основанию, например к столу. Изгибать выводы надо не очень много, тут скорее дело привычки, но устанавливать в панельку потом микросхему гораздо удобнее.
При установке смотрим чтобы выводы случайно не загнулись внутрь, под микросхему, так как при отгибании обратно они могут отломиться.

Микросхемы устанавливаем в соответствии ключом на панельке, которая в свою очередь установлена в соответствии с маркировкой на плате.

Закончив с платой переходим к дисплею.
В комплекте дали штыревую часть разъема, который необходимо припаять.
после установки разъема я сначала припаиваю один крайний вывод, не важно красиво он припаян или нет, главное добиться того, чтобы разъем стоял плотно и перпендикулярно плоскости платы. Если необходимо, то прогреваем место пайки и подравниваем разъем.
После выравнивания разъема пропаиваем остальные контакты.

Все, можно промывать плату. В этот раз я это решил сделать до проверки, хотя обычно советую делать промывку уже после первого включения, так как иногда приходится еще что нибудь паять.
Но как показала практика, с конструкторами все гораздо проще и после сборки паять приходится редко.

Промывать можно разными способами и средствами, кто то использует спирт, кто то спирто-бензиновую смесь, я мою платы ацетоном, по крайней мере пока могу его купить.
Уже когда промыл, то вспомнил совет из предыдущего обзора по поводу щетки, так как я пользуюсь ваткой. Ничего, придется перенести эксперимент на следующий раз.

У меня в работе вработалась привычка после промывки платы покрывать ее защитным лаком, обычно снизу, так как попадание лака на разъемы недопустимо.
В работе я использую лак Пластик 70.
Данный лак очень «легкий», т.е. он при необходимости смывается ацетоном и пропаивается паяльником. Есть еще хороший лак Уретан, но с ним все заметно сложнее, он прочнее и паяльником пропаять его гораздо труднее. ТАкой лак используется для тяжелых условий эксплуатации и тогда, когда есть уверенность в том, что плату паять больше не будем, хотя бы какое то длительное время.

После покрытия лаком плата становится более глянцевой и приятной на ощупь, возникает некоторое ощущение законченности процесса:)
Жалко фото не передает общую картину.
Меня иногда смешили слова людей типа - этот магнитофон/телевизор/приемник ремонтировали, вон видно следы пайки:)
При хорошей и правильной пайке следов ремонта нет. Только специалист сможет понять, ремонтировали устройство или нет.

Пришла очередь установки дисплея. Для этого в комплекте дали четыре винтика М3 и две монтажные стойки.
Дисплей крепится только со стороны обратной разъему, так как со стороны разъема он держится собственно за сам разъем.

Устанавливаем стойки на основную плату, затем устанавливаем дисплей, ну и в конце фиксируем всю эту конструкцию при помощи двух оставшихся винтиков.
понравилось то, что даже отверстия совпали с завидной точностью, причем без подгонки, просто вставил и вкрутил винтики:).

Ну все, можно пробовать.
Подаю 5 Вольт на соответствующие контакты разъема и…
И ничего не происходит, только включается подсветка.
Не стоит пугаться и сразу искать решение на форумах, все нормально, так и должно быть.
Вспоминаем что на плате есть подстроечный резистор и он там не зря:)
Данным подстроечным резистором надо отрегулировать контрастность дисплея, а так как он изначально стоял в среднем положении, то вполне закономерно, что мы ничего не увидели.
Берем отвертку и вращаем этот резистор добиваясь нормального изображения на экране.
Если сильно перекрутить, то будет переконтраст, мы увидим все знакоместа сразу, а активные сегменты будут еле просматриваться, в этом случае просто крутим резистор в обратную сторону пока неактивные элементы не сойдут почти на нет.
Можно отрегулировать так, что неактивные элементы вообще не будут видны, но я обычно оставляю их еле заметными.

Дальше мне бы перейти к тестированию, да не тут то было.
Когда я получил плату, то первым делом заметил, что помимо 5 Вольт ей надо +12 и -12, т.е. всего три напряжения. Я прям вспомнил РК86, где надо было +5, +12 и -5 Вольт, причем подавать их надо было в определенной последовательности.

Если с 5 Вольт проблем не было, да и с +12 Вольт также, то -12 Вольт стали небольшой проблемой. Пришлось сделать небольшой временный блок питания.
Ну в процессе была классика, поиск по сусекам того из чего можно его собрать, трассировка и изготовление платы.

Так как трансформатор у меня был только с одной обмоткой, а импульсник городить не хотелось, то я решил собирать БП по схеме с удвоением напряжения.
Скажу честно, это далеко не самый лучший вариант, так как такая схема имеет довольно высокий уровень пульсаций, а запаса по напряжению, чтобы стабилизаторы могли его полноценно фильтровать у меня было совсем впритык.
Сверху та схема по которой делать более правильно, снизу та, по которой делал я.
Отличие между ними в дополнительной обмотке трансформатора и двух диодах.

Я поставил также почти без запаса. Но при этом он достаточен при нормально сетевом напряжении.
Я бы рекомендовал применить трансформатор как минимум на 2 ВА, а лучше на 3-4ВА и имеющий две обмотки по 15 Вольт.
Кстати потребление платы небольшое, по 5 Вольт вместе с подсветкой ток составляет всего 35-38мА, по 12 Вольт ток потребления еще меньше, но зависит от нагрузки.

В итоге у меня вышла небольшая платка, по размерам чуть больше спичечного коробка, в основном в высоту.

Разводка платы на первый взгляд может показаться несколько странной, так как можно было повернуть трансформатор на 180 градусов и получить более аккуратную разводку, я так сначала и сделал.
Но в таком варианте выходило, что дорожки с сетевым напряжением оказывались в опасной близости от основной платы прибора и я решил немного изменить разводку. не скажу что стало отлично, но по крайней мере так хоть немного безопаснее.
Можно убрать место под предохранитель, так как с примененным трансформатором в нем нет особой нужды, тогда будет еще лучше.

Так выглядит полный комплект прибора. для соединения БП с платой прибора я спаял небольшой жесткий соединитель 4х4 контакта.

Плата БП подключается при помощи соединителя к основной плате и теперь можно переходить к описанию работы прибора и тестированию. Сборка на этом этапе окончена.
Можно было конечно поставить все это в корпус, но для меня такой прибор скорее вспомогательный, так как я уже смотрю в сторону более сложных DDS генераторов, но и стоимость их не всегда подойдет новичку, потому я решил оставить как есть.

Перед началом тестирования опишу органы управления и возможности устройства.
На плате есть 5 кнопок управления и кнопка сброса.
Но по поводу кнопки сброса думаю все понятно и так, а остальные я опишу более подробно.
Стоит отметить небольшой «дребезг» при переключении правой/левой кнопки, возможно программный «антидребезг» имеет слишком маленькое время, проявляется в основном только в режиме выбора частоты выхода в режиме HS и шага перестройки частоты, в остальных режимах проблем не замечено.
Кнопки вверх и вниз переключают режимы работы прибора.
1. Синусоидальный
2. Прямоугольный
3. Пилообразный
4. Обратный пилообразный

1. Треугольный
2. Высокочастотный выход (отдельный разъем HS, остальные формы приведены для выхода DDS)
3. Шумоподобный (генерируется случайным перебором комбинаций на выходе ЦАП)
4. Эмуляция сигнала кардиограммы (как пример того, что генерировать можно любые формы сигналов)

1-2. Изменять частоту на выходе DDS можно в диапазоне 1-65535ГЦ с шагом 1Гц
3-4. Отдельно есть пункт, позволяющий выбрать шаг перестройки, по умолчанию включается шаг 100Гц.
Изменять частоту работы и режимы можно только в режиме, когда генерация выключена., изменение происходит при помощи кнопок влево/вправо.
Включается генерация кнопкой START.

Также на плате расположены два переменных резистора.
Один из них регулирует амплитуду сигнала, второй - смещение.
На осциллограммах я попытался показать как это выглядит.
Верхние две - изменение уровня выходного сигнала, нижние - регулировка смещения.

Дальше пойдут результаты тестов.
Все сигналы (кроме шумоподобного и ВЧ) проверялись на четырех частотах:
1. 1000Гц
2. 5000Гц
3. 10000Гц
4. 20000Гц.
На частотах выше был большой завал потому эти осциллограммы приводить не имеет особого смысла.
Для начала синусоидальный сигнал.

Пилообразный

Обратный пилообразный

Треугольный

Прямоугольный с выхода DDS

Кардиограмма

Прямоугольный с ВЧ выхода
Здесь предоставляется выбор только из четырех частот, их я и проверил
1. 1МГц
2. 2МГц
3. 4МГц
4. 8МГц

Шумоподобный в двух режимах развертки осциллографа, чтобы было более понятно что он из себя представляет.

Как показало тестирование, сигналы имеют довольно искаженную форму начиная примерно с 10КГц. Сначала я грешил на упрощенный ЦАП, да и на саму простоту реализации синтеза, но захотелось проверить более тщательно.
Для проверки я подключился осциллографом прямо на выход ЦАП и установил максимально возможную частоту синтезатора, 65535Гц.
Здесь картина получше, особенно с учетом того, что генератор работал на максимальной частоте. Подозреваю что виной простая схема усиления, так как до ОУ сигнал заметно «красивее».

Ну и групповое фото небольшого «стенда» начинающего радиолюбителя:)

Резюме.
Плюсы
Качественное изготовление платы.
Все компоненты были в наличии
Никаких сложностей при сборке не возникло.
Большие функциональные возможности

Минусы
BNC разъемы стоят слишком близко друг к другу
Нет защиты по выходу HS.

Мое мнение. Можно конечно сказать что характеристики прибора совсем плохие, но стоит учитывать то, что это DDS генератор самого начального уровня и не совсем правильно было бы ожидать от него чего то большего. Порадовала качественная плата, собирать было одно удовольствие, не было ни одного места, которое пришлось «допиливать». В виду того, что прибор собран по довольно известной схеме, есть надежда на альтернативные прошивки, которые могут увеличить функционал. С учетом всех плюсов и минусов я вполне могу рекомендовать этот набор как стартовый для начинающих радиолюбителей.

Фух, вроде все, если накосячил где то, пишите, исправлю/дополню:)

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +47 Добавить в избранное Обзор понравился +60 +126

Генератор различных стабильных частот является необходимым лабораторным оборудованием. В интернете есть немало схем, но они либо морально устарели, либо не обеспечивают достаточно широкого перекрытия частот. Устройство, описываемое здесь, основано на высоком качестве работы специализированной микросхемы XR2206 . Диапазон перекрываемых генератором частот впечатляет: 1 Гц - 1 МГц! XR2206 способна генерировать качественные синусоидальные, прямоугольные и треугольные формы сигналов высокой точности и стабильности. У выходных сигналов может быть как амплитудная и частотная модуляция.

Параметры генератора

Синусоидальный сигнал:

Амплитуда: 0 - 3В при питании 9В
- Искажения: менее 1% (1 кГц)
- Неравномерность: +0,05 дБ 1 Гц - 100 кГц

Прямоугольный сигнал:

Амплитуда: 8В при питании 9В
- Время нарастания: менее 50 нс (при 1 кГц)
- Время спада: менее 30 нс (на 1 кГц)
- Рассимметрия: менее 5% (1 кГц)

Треугольный сигнал:

Амплитуда: 0 - 3 В при питании 9 В
- Нелинейность: менее 1% (до 100 кГц)

Схемы и ПП




Рисунки печатных плат

Грубая регулировка частоты осуществляется с помощью 4-х позиционного переключателя для частотных диапазонов; (1) 1 Гц-100 Гц, (2) 100 Гц-20 кГц, (3) 20 кГц-1 МГц (4) 150 кГц-1 МГц. Несмотря на то, что в схеме указан верхний предел 3 мегагерца, гарантированная предельная частота составляет именно 1 Мгц, далее генерируемый сигнал может быть менее стабильным.

Способный одновременно генерировать сигналы прямоугольной и пилообразной формы, обычно состоит из двух частей (рис. 36.1):

♦ неинвертирующего триггера Шмитта на микросхеме DA1;

♦ интегратора на микросхеме DA2.

При С 1=4,7 нФ частота генерации - 30 кГц, при 0=47 нФ -

20 Гц. Напряжение питания генератора может варьироваться в пределах 4,5-18 В.

Учитывая высокую актуальность функциональных генераторов, были созданы специализированные микросхемы таких генераторов. Примером является ICL8038 фирмы Harris Semiconductor.

Напряжение питания ±(5-15) В при двуполярном питании или 10-30 В - при однополярном. Потребляемый микросхемой ток не превышает 20 мА (номинальный - 12 мА) при напряжении питания ±10 В. Амплитуда выходного напряжения треугольной формы на сопротивлении нагрузки 100 кОм достигает 1/3 от напряжения питания, для сигнала синусоидальной формы - до 0,22 от напряжения питания.

Варианты подключения внешних элементов регулировки режима работы микросхемы ICL8038 приведены на рис. 36.6.

При использовании микросхемы ICL8038 (рис. 36.7) удобно

Рис. 36.6. Варианты подключения резистивных элементов к микросхеме ICL8038

Рис. 36.7. Вариант включения микросхемы ICL8038 с частотной модуляцией генерируемых сигналов

осуществлять частотную модуляцию генерируемых сигналов. Используя эту особенность микросхемы несложно создать сигналов прямоугольной, треугольной и синусоидальной формы, одновременно управляемых уровнем внешнего напряжения.

Для уменьшения искажений сигнала синусоидальной формы применяют регулировки, предусмотренные схемным решением, представленным на рис. 36.8.

Рис. 36.8. включения микросхемы ICL8038 с минимизацией искажения сигнала синусоидальной формы

Для того чтобы повысить нагрузочную способность генератора используют схему, показанную на рис. 36.9. Использован обычный буферный каскад, который можно использовать для каждого из выходов . нагрузки определяется выбором

микросхемы ОУ; для приведенного случая нагрузки не должно быть менее 1 кОм.

Рис. 36.9. на микросхеме ICL8038 с повышенной нагрузочной способностью для сигнала синусоидальной формы

Рис. 36Л0. на микросхеме ICL8038 с регулировкой частоты от 20 Гц до 20 кГц

Практическая широкодиапазонного , перекрывающего весь диапазон звуковых частот, приведена на рис. 36.10. Потенциометром R7 минимизируют искажения сигнала синусоидальной формы. R3 предназначен для регулировки соотношения импульс/ пауза (или симметрии) генерируемых сигналов. Потенциометром R10 регулируют частоту генерируемых сигналов.

Аддитивный формирователь сигналов треугольной формы

Электрические сигналы треугольной формы обычно получают при использовании зарядно-разрядных процессов в RC-цепочках. В работах описан и проанализирован принцип формирования сигналов треугольной формы путем противофазного сложения выпрямленных с использованием двухполупериодных выпрямителей сигналов синусоидальной формы, сдвинутых между собой на угол 90°. Ниже приведен вариант практической реализации перестраиваемого по частоте генератора сигналов треугольной формы, использующий данный принцип синтеза.

DA1-DA3 собран LR- сигналов синусоидальной формы, с выходов которого снимаются сдвинутые по фазе на угол 90° сигналы (точки А и В). Эти сигналы подаются на входы двух прецизионных выпрямителей, выполненных DA4, DA5 и DA6, DA7, соответственно. Сигналы с выходов выпрямителей (точки С и D) смешиваются на резистивном сумматоре-делителе напряжения R13, R15, R16 (точка Е). Выходной сигнал (точка Е) имеет треугольную форму с отклонением от линейности до 3 %.

Рабочая частота генератора определяется номиналами частотозадающих цепей - индуктивностей LI, L2, сдвоенного потенциометра R9, R10 и резисторов R7, R8. Для указанных номиналов диапазон частоты перестройки составляет 3300-4000 Гц.

Ступенчато изменить частотный диапазон работы можно переключением катушек индуктивности LI, L2. При расширении диапазона перестройки путем дальнейшего изменения соотношения элементов

Рис. 36.11. беземкостного перестраиваемого генератора сигналов треугольной формы

R7/R9=R8/R10 становится заметной выраженная зависимость амплитуды выходного сигнала от частоты. Для исключения этого недостатка необходимо либо сузить диапазон перестройки генератора, либо использовать промежуточные усилители с автоматической регулировкой усиления.

Инверсного построения

При создании функциональных генераторов традиционно используют прямоугольных импульсов, к выходу которого подключают формирователь треугольного напряжения, основанный на зарядно-разрядных процессах. Затем сигнал треугольной формы преобразуют в подобие синусоидального, выделяя из нее первую гармонику . Недостатки таких схемных решений очевидны: это явно выраженная нелинейность зарядноразрядных процессов, особенно заметная при перестройке частоты генератора и заметные искажения синусоидального сигнала в результате некачественной фильтрации высших гармоник сложного сигнала.

С. И. Семенова - прецизионные двухполупериодные выпрямители (микросхемы DA4, DA5 и DA9, DA10), выходные сигналы которых складываются в противофазе, формируя тем самым сигнал треугольной формы. Сигнал треугольной формы поступает затем на схему формирования биполярных импульсов прямоугольной формы (микросхемы DA6-DA8).

Диаграммы сигналов в различных точках устройства показаны на рис. 36.12.

Работает в диапазоне частот: для сигналов синусоидальной формы - 50-500 Гц, для сигналов треугольной и прямоугольной формы (с удвоением исходной частоты) - 100-1000 Гц. Рабочую частоту плавно меняют перестройкой сдвоенного потенциометра R9, R10. Ступенчатое переключение диапазона генерируемых частот вплоть до субгерцовых может быть обеспечено переключением частотозадающих конденсаторов С2 и СЗ. Так, при уменьшении емкостей конденсаторов С2 и СЗ в 10 раз, т. е. до 3,3 нФ, диапазон генерируемых частот составляет 1000-10000 Гц по пилообразному и прямоугольному сигналам; по синусоидальному - 500-5000 Гц.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

В данной статье описывается простой генератор звуковых частот, проще говоря - пищалка. Схема простая и состоит всего из 5 элементов, если не считать батарейку и кнопку.

Описание схемы:
R1 задает смещение на базу VT1. А с помощью C1 осуществляется обратная связь. Динамик является нагрузкой VT2.

Сборка:
Итак, нам понадобится:
1) Комплементарная пара из 2х транзисторов, то есть один NPN и один PNP. Подойдут практически любые маломощные, например КТ315 и КТ361 . Я использовал то, что было под рукой - BC33740 и BC32740.
2) Конденсатор 10-100нФ, я использовал 47нФ (маркировка 473).
3) Подстроечный резистор около 100-200 кОм
4) Любой маломощный динамик. Можно использовать наушники.
5) Батарейка. Можно практически любую. Пальчиковую, или крону, разница будет только в частоте генерации и мощности.
6) Небольшой кусок фольгированного стеклотекстолита, если планируется делать все на плате.
7) Кнопка или тумблер. Мной была использована кнопка из китайской лазерной указки.

Итак. Все детали собраны. Приступаем к изготовлению платы. Я сделал простенькую плату поверхностного монтажа механическим путем (то есть при помощи резака).

Итак, все готово к сборке.

Сначала монтируем основные компоненты.

Потом впаиваем провода питания, батарейку с кнопкой и динамик.

На видео показана работа схемы от 1.5В батарейки. Подстроечный резистор меняет частоту генерации

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1 Биполярный транзистор

КТ315Б

1 В блокнот
VT2 Биполярный транзистор

КТ361Б

1 В блокнот
C1 Конденсатор 10-100нФ 1 В блокнот
R1 Резистор 1-200 кОм 1

Схема низкочастотного генератора.

Низкочастотный генератор является одним из необходимейших приборов в радиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты. Генератор НЧ может быть источником НЧ сигнала, необходимого для работы других приборов (измерительных мостов, модуляторов и др.).

Принципиальная схема генератора показана на рисунке 1. Схема состоит из низкочастотного синусоидального генератора на операционном усилителе А1 и выходного делителя на резисторах R6, R12, R13, R14.

Схема синусоидального генератора традиционная. Операционный усилитель, при помощи положительной обратной связи (С1-СЗ, R3, R4, R5, С4-С6) выполненной по схеме моста Винна, переведен в режим генерации. Избыточная глубина положительной обратной связи, приводящая к искажению выходного синусоидального сигнала, компенсируется отрицательной ОС R1-R2. Причем, R1 подстроечный, чтобы с его помощью можно было установить величину ОС такой, при которой на выходе операционного усилителя неискаженный синусоидальный сигнал наибольшей амплитуды.
Лампа накаливания Н1 включена на выходе ОУ в его цепи обратной связи. Вместе с резистором R16 лампа образует делитель напряжения, коэффициент деления которого зависит от протекающего через него тока (лампа Н1 выполняет функции терморезистора, увеличивая свое сопротивление от нагрева, вызванного протекающим током).

Частота устанавливается двумя органами управления, - переключателем S1 выбирают один из трех поддиапазонов «20-200 Гц», «200-2000 Гц» и «2000-20000 Гц». Реально диапазоны немного шире и частично перекрывают друг друга. Плавная настройка частоты производится сдвоенным переменным резистором R5. Желательно чтобы резистор был с линейным законом изменения сопротивления. Сопротивления и законы изменения составных частей R5 должны быть строго одинаковыми, поэтому, применение самодельных сдвоенных резисторов (сделанных из двух одиночных) недопустимо. От точности равенства сопротивлений R5 сильно зависит коэффициент нелинейных искажений синусоидального сигнала.

На оси переменного резистора закреплена ручка со стрелкой (как у галетных приборных переключателей) и простая шкала для установки частоты. Для точной установки частоты лучше всего использовать цифровой частотомер.
Выходное напряжение плавно регулируют переменным резистором R6. С этого резистора поступает НЧ напряжение на выход. Понизить установленное значение в 10 и 100 раз можно при помощи аттенюатора на резисторах R12-R14.
Максимальное выходное напряжение НЧ генератора, - 1,0V.
Контролировать величину выходного напряжение удобнее всего по низкочастотному милливольтметру, делая поправку на значение аттенюатора на резисторах R12-R14.

Выключают генератор тумблером на два направления S2, отключающим генератор от источника двуполярного напряжения ±10V.


Большинство деталей расположено на печатной плате. Все регуляторы-резисторы, переключатели и разъемы расположены на передней панели. Многие детали смонтированы на их выводах.

Переключатель S1 галет-ный на три направления и три положения. Используются только два направления. Выключатель S2 -тумблер на два направления. Все разъемы - коаксиальные разъемы типа «Азия» от видеотехники. Дроссели L1 и L2 - от модулей цветности старых телевизоров УСЦТ (можно использовать любые дроссели индуктивностью не менее 30 мкГн). Лампа накаливания Н1 - индикаторная, с гибкими проволочными выводами (похожа на светодиод), на напряжение 6,3V и то 20 тА. Можно использовать и другую лампу на напряжение 2,5-13,5V и ток не более 0,1 А.

Налаживать генератор желательно используя частотомер и осциллограф. В этом случае, подстройкой резистора R1 добиваются максимального и неискаженного переменного синусоидального напряжения на выходе генератора, во всем диапазоне частот (это, обычно, соответствует величине выходного переменного напряжения 1V). Затем, более точным подбором R4 и R3 (эти сопротивления должны быть одинаковы) устанавливают диапазоны перестройки частоты. Если используются недостаточно точные конденсаторы С1-С6 может понадобиться их подбор или включение параллельно им «достроечных» конденсаторов.

Иванов А.

Литература:
1. Овечкин М. Низкочастотный измерительный комплекс, ж. Радио №4, 1980.

Радиоконструктор 08-2016
Скачать: Низкочастотный генератор для радиолюбительской лаборатории
В случае обнаружения "битых" ссылок - Вы можете оставить комментарий, и ссылки будут восстановлены в ближайшее время.

Похожие публикации