Автомобильный портал

Средства технического диагностирования электрооборудования. Организация работ по диагностированию электрооборудования. Из сил механической природы следует выделить

Как было указано ранее, диагностирование позволяет осуществить переход к новой прогрессивной форме эксплуатации электрооборудования, согласно которой ремонтные работы проводят исходя из действительного технического состояния электрооборудования. При эксплуатации электрооборудования диагностирование применяется в следующих основных случаях:

  • для определения технического состояния при контроле электрооборудования в плановом порядке;
  • для определения причин возникновения отказов или нарушения нормальной работы электрооборудования при внеплановом диагностировании;
  • для определения сроков текущих и капитальных ремонтов; при проведении технического обслуживания;
  • при проведении текущих и капитальных ремонтов.

Схема применения методов и средств диагностирования при проведении планового контроля, технического обслуживания и текущих ремонтов электрооборудования показана на рис. 53.

Рис. 53. Схема применения методов и средств диагностирования электрооборудования

Исследования, проведенные при разработке и внедрении методов и средств диагностирования показывают, что с применением диагностирования система ППР приобретает новую прогрессивную форму, в соответствии с которой эксплуатацию электрооборудования целесообразно организовать следующим образом.

Техническое обслуживание проводить периодически, согласно квартальным графикам. При техническом обслуживании, кроме ранее выполнявшихся согласно системе ППР операций, рекомендуется проводить диагностирование для определения общего технического состояния электрооборудования по обобщенным (основным) показателям, а также контролировать стабильность регулируемых параметров.

Плановое диагностирование проводить периодически, согласно заранее составленным графикам. При плановом диагностировании определяется техническое состояние всех деталей и узлов, ограничивающих ресурс работы электрооборудования, техническое состояние диагностируемой электрической машины или установки в целом и прогнозируется остаточный ресурс их работы до текущего или капитального ремонта. На 1-м этапе внедрения методов диагностирования до накопления достаточного опыта допускается прогнозировать безотказную работу электрооборудования до следующего планового диагностирования.

Текущий и капитальный ремонты проводить по данным диагностирования, т. е. только с учетом технического состояния. При текущем и капитальном ремонтах проводят диагностирование основных деталей и узлов для определения их остаточного ресурса. По данным диагностирования при текущем ремонте устанавливают или уточняют сроки проведения очередного капитального ремонта, так как становится известным остаточный ресурс основных деталей и узлов электрооборудования.

Для некоторых видов электрооборудования, в связи с особенностями их работы, допускается отступать от приведенной выше схемы организации эксплуатации. Например, для погружных электронасосов контроль технического состояния целесообразно проводить с помощью автоматических диагностических устройств, устанавливаемых около или встраиваемых в станции управления.

Таким образом, по сравнению с ранее выполнявшимися работами дополнительно вводится новый вид работ — диагностирование. Затраты времени и средств на диагностирование окупаются в несколько раз в результате снижения трудоемкости и затрат на проведение текущих и капитальных ремонтов электрооборудования, так как ремонты проводятся не периодически по заранее составленным графикам, а только при необходимости. Кроме того, при введении диагностирования в систему эксплуатации резко снижается число отказов электрооборудования, т. е. повышается надежность его работы.

Введение планового диагностирования в систему эксплуатации не означает отказ от планирования работ по текущему и капитальному ремонтам электрооборудования. Если до введения диагностирования составлялись планы (годовые для капитального ремонта и квартальные для текущего), в которых указывались сроки ремонта каждой единицы электрооборудования и определялись общие объемы ремонтных работ, то после введения диагностирования также составляются планы ремонта, но в них указываются только общие объемы работ на группу электрооборудования, например, электрооборудования цеха или небольшого предприятия. Сроки проведения ремонта каждой конкретной единицы электрооборудования устанавливаются в процессе эксплуатации по данным планового диагностирования.

Планирование объемов (трудоемкости и стоимости) ремонтных работ проводят на основании средних статистических данных о годовых объемах ранее выполненных по данным диагностирования работ по текущему и капитальному ремонтам для каждого основного вида электрооборудования (электродвигателей, синхронных генераторов, сварочных генераторов и преобразователей, низковольтных аппаратов и др.). По истечении года эти данные корректируются на основании фактически выполненного объема работ и скорректированные значения используют для расчетов объемов работ на следующий планируемый год. Такая ежегодная корректировка позволяет наиболее точно определять объемы ремонтных работ, которые будут выполняться по данным диагностирования, а также необходимую численность ремонтного персонала.

Работы по плановому диагностированию электрооборудования проводятся согласно графикам (приложение, форма 1), составляемым на год. График диагностирования электрооборудования обычно утверждает главный энергетик предприятия. На предприятиях, где должность главного энергетика не предусмотрена штатным расписанием, график утверждает главный инженер. При составлении графика для каждой единицы электрооборудования учитывается срок проведения последнего диагностирования и периодичность диагностирования (межконтрольный срок).

На предприятиях, в зависимости от количества электрооборудования и местных условий, рекомендуется применять один из вариантов проведения диагностирования: или диагностирование проводит отдельная группа эксплуатационного персонала; или диагностирование проводит ремонтно-диагностическая группа.

При диагностировании электрооборудования по первому варианту, определение технического состояния проводится группой, состоящей не менее, чем из двух человек (в соответствии с правилами техники безопасности). Группа диагностов может также выполнять регулировочные операции, при которых требуется проведение измерений диагностическими приборами.

Результаты измерений при диагностировании и выводы о техническом состоянии и необходимости замены деталей или проведения ремонта электрооборудования заносятся в журнал (приложение, форма 2), в котором каждой единице подлежащей диагностированию электрооборудования отводится одна или несколько страниц. Проведение записей отдельно для каждой конкретной единицы электрооборудования облегчает сравнительный анализ полученных данных с данными предыдущих диагностирований, так как можно легко обнаружить изменения в техническом состоянии объектов.

В журнале записывают дату проведения диагностирования, наработки после последнего диагностирования и установки электрооборудования, результаты внешнего осмотра, данные измерений диагностических параметров. Наработка после последнего диагностирования и после установки необходима для прогнозирования остаточного ресурса работы электрооборудования. На основании сравнения данных измерений диагностических параметров с их допустимыми значениями в графе 12 формы 2 записывают вывод о техническом состоянии электрооборудования (не требует ремонта до следующего диагностирования, требуется провести регулировку определенного узла, необходима замена быстросъемной детали, необходим текущий или капитальный ремонт).

Если диагностирование проводит диагностическая группа, а ремонт — группа (бригада) ремонта, то по результатам диагностирования электрооборудования участка или цеха заполняют бланк распоряжения на проведение ремонтных работ и передают группе (бригаде) ремонтников.

В распоряжение заносят сведения только о том электрооборудовании, которому необходимо провести текущий или капитальный ремонт, а также в случаях, когда в нем требуется заменить быстросъемный узел или деталь или провести регулировочные операции. В распоряжение записывают вид ремонта или работ, которые необходимо провести (текущий или капитальный ремонты, замена детали, регулировка узла). Кроме того, проставляют срок, до которого данная единица электрооборудования может работать без угрозы выхода из строя, т. е. предельный срок проведения ремонта, замены узла или детали, выполнения регулировочных работ, а также указывают объемы работ, которые необходимо выполнить при текущем ремонте, например, заменить подшипник со стороны вентилятора и др. В случае необходимости замены быстросъемного узла или детали, указывают наименование требующего замены узла или детали, а при необходимости выполнения регулировочных работ — какие параметры электрооборудования нужно отрегулировать. Если электрооборудованию необходим капитальный ремонт, указывают причину его вывода в капитальный ремонт, например, ослабление и наличие дефектов в меж-витковой изоляции обмотки статора.

Распоряжение составляет руководитель группы диагностов, а подписывают энергетик или начальник цеха (отделения, участка и др.). После выполнения указанных в распоряжении объемов работ, делают соответствующую отметку.

При втором варианте, когда диагностирование и ремонт электрооборудования проводит одна и та же группа или бригада, вначале проводится диагностирование, а затем — ремонт. В этом случае распоряжение не составляется, а ремонтные и другие работы выполняются согласно данным журнала диагностирования электрооборудования (форма 2). После окончания работ в графе 13 формы 2 делают отметку о выполненной работе.

Первый вариант наиболее приемлем при наличии на предприятии сравнительно большого числа электрооборудования и хорошо налаженной службы эксплуатации. Если на предприятии имеется электротехническая лаборатория, диагностирование электрооборудования целесообразно проводить силами этой лаборатории. По второму варианту можно организовать работы по диагностированию и ремонту электрооборудования на предприятиях с меньшим числом электрооборудования и ограниченной численностью эксплуатационного персонала.

Полный перечень проводимых при диагностировании операций, последовательность, а также указания по содержанию выполняемых операций должны быть приведены в технической документации на диагностирование электрооборудования (в технологиях диагностирования, типовых технологических картах на диагностирование отдельных узлов и деталей и в другой документации).

Периодичность диагностирования зависит от режимов и условий работы электрооборудования (продолжительность работы в течение суток, месяца, года; степени загрузки; среды и др.). До накопления достаточного количества данных эксплуатации для определения строго обоснованной периодичности планового диагностирования продолжительность межконтрольного периода (времени между диагностированиями) рекомендуется принимать меньшей продолжительности периода между текущими ремонтами, устанавливаемого согласно вневедомственной «Системе планово-предупредительного ремонта оборудования и сетей промышленной энергетики».

Следует отметить, что кроме плановых на практике приходится проводить внеплановые диагностирования, когда эксплуатационный персонал обнаруживает нарушения в нормальной работе электрооборудования или данные измерений обобщенных диагностических параметров, проводимых при техническом обслуживании, указывают на необходимость детального диагностирования.

На специализированных участках и в цехах по текущему или капитальному ремонтам электрооборудования рекомендуется организовать рабочие места диагностирования. Задачей таких рабочих мест является определение технического состояния и остаточного ресурса наиболее ответственных узлов и деталей электрооборудования и решение вопросов, проработают ли эти узлы и детали без ремонта следующий межремонтный период. Если в процессе диагностирования оказывается, что остаточный ресурс узла или детали меньше межремонтного периода, узел или деталь подвергают ремонту или заменяют.

При проведении диагностирования электрооборудования электротехнический персонал должен быть обеспечен нормативно-технической и технологической документацией. К нормативно-технической документации относятся инструкции (указания, рекомендации) по организации диагностирования электрооборудования в ведомстве и на предприятиях, периодичность проведения диагностирования разных видов электрооборудования, трудоемкость выполнения работ по диагностированию, расценки работ, нормы расхода запасных частей на техническое обслуживание и ремонт средств для диагностирования и другие документы.

К технологической документации относятся технологии диагностирования разных видов электрооборудования, обычно издаваемых в виде набора технологических карт на диагностирование отдельных узлов и деталей электрооборудования. Как правило, технологию диагностирования разрабатывают отдельно для каждого наименования электрооборудования, например, для электродвигателей, синхронных и сварочных генераторов, преобразователей, магнитных пускателей, автоматических выключателей и др.

Особенности, методические и информационные основы методов диагностирования электрооборудования достаточно разнообразны и подробно описаны в специальной литературе. Поэтому ниже дается лишь общий обзор наиболее распространенных методов контроля, разрабатываемых в России. Некоторые применяемые и наиболее перспективные разрабатываемые направления диагностирования электрооборудования приведены в табл. 5.2.

Метод инфракрасной термографии . Изменение температуры узлов и элементов электрооборудования в процессе эксплуатации является важным информативным признаком их технического состояния. Дистанционный контроль температуры нагрева токоведущих частей, контактных соединений, корпусов электрооборудования, подвесной и опорно-стержневой изоляции реализуется средствами тепловизионного контроля. Этот метод диагностики основан на регистрации инфракрасного излучения.

Разрешающая способность тепловизионного контроля 0,2 о С. В электроэнергетике России наиболее широко распространены отечественные тепловизоры ТВ-03 и тепловизоры шведской фирмы AGEMA, например AGEMA-782.

Оценка технического состояния контактных соединений производится сравнением температуры однотипных контактов, находящихся в одинаковых условиях по нагрузке и охлаждению, а также температуры контактного соединения и сплошных участков токопроводов. Оценка технического состояния изоляторов основана на анализе разницы температур дефектного и непробитого изолятора. Эта разница определяется напряжением на изоляторе и величиной диэлектрических потерь фарфора изолятора.

Температура пробитого изолятора равна температуре окружающей среды, так как напряжение на нем нуль. Температура непробитого изолятора определяется по средним параметрам емкости, размеров и напряжения и превышает температуру окружающей среды на 0,4–0,5 о С.

Т а б л и ц а 5.2 Направления диагностирования электрооборудования

Электрооборудование

Направление диагностирования

Турбогенераторы

Диагностика теплового состояния обмотки ротора

Диагностика неисправностей обмотки статора

Диагностика системы охлаждения стержней обмотки статора

Контроль вибрации и диагностика механического состояния

Диагностика щеточно-контактного аппарата

Контроль электромагнитного излучения

Диагностика уплотнений и подшипников

Диагностика системы возбуждения

Силовые трансформаторы

Хроматографический анализ газов, растворенных в масле

Температурный контроль

Контроль износа контактов РПН

Тепловизионный контроль трансформаторов

Регистрация частичных разрядов в изоляции

Выключатели высокого напряжения

Контроль коммутационного и механического ресурса

Оценка состояния контактной системы

Контроль характеристик привода

Контроль состояния фарфоровых изоляторов

Контроль утечек дугогасительной среды (воздух, элегаз)

Высоковольтные электродвигатели

Диагностика обрыва стержней короткозамкнутого ротора

Контроль витковых замыканий

Вибрационный контроль обмоток статора

Контроль подшипникового узла

Контроль и защита от неуспешных пусков

Контроль эксцентриситета воздушного зазора между ротором и статором

Контроль неполнофазных режимов

Контроль направления вращения

Непрерывный селективный контроль активного сопротивления изоляции

Температурный контроль

Оценка расхода ресурса на основе контроля пусковых и длительных режимов работы

КРУ и токопроводы

Контроль дуговой защиты

Тепловизионный контроль состояния электрических контактов и изоляторов

Воздушные и кабельные линии

Дистанционная тепловизионная диагностика контактов и подвесной изоляции

Контроль частичных разрядов

Диагностика опор ЛЭП

Контроль состояния изоляции кабелей

Тепловизионный метод контроля получил наибольшее применение в открытых и закрытых распредустройствах напряжением 35 кВ и выше, а также на ЛЭП.

Метод хроматографического контроля маслонаполненного оборудования . Это наиболее проработанный и распространенный в электроэнергетике метод диагностики. Он применим для раннего обнаружения развивающихся дефектов внутри маслонаполненных силовых трансформаторов, автотрансформаторов, шунтирующих реакторов, крупных электрических машин с водомасляной системой охлаждения, измерительных трансформаторов, высоковольтных вводов и высоковольтных кабелей. Хроматография есть разделение смесей. Идея метода основана на предположении, что повреждение в маслонаполненном оборудовании сопровождается выделением различных газов, отсутствующих в масле при нормальной работе. Эти газы растворены в масле. Выделив их из масла и проведя хроматографический анализ, можно обнаружить дефекты на ранней стадии возникновения. В настоящее время изучен состав газов, содержащихся в масле недефектного нормально работающего оборудования, выявлены газы, характерные для различных повреждений, и граничные их концентрации. При этом определяют концентрации водорода , метана
, этилена
, этана
, ацетилена
, оксида и диоксида углерода СО,
и других газов.

Отбор масла из работающего трансформатора производится специальными маслоотборниками поршневого типа. При этом исключается соприкосновение масла с окружающей воздушной средой и предотвращаются потери растворенных в масле газов в процессе отбора. Масло помещается в замкнутый объем, и газ над поверхностью масла подвергается анализу. Для анализа состава, динамики изменения и концентрации газов в пробах масла применяют хроматографы. Кроме того, известны встроенные средства анализа газов, растворенных в масле, и выделившихся газов, а также устройства непрерывного контроля, основанные на определении
и
, растворенных в масле. Характер и примерное место повреждения определяют по количественному составу газов. Необходимость выявления дефекта на ранних стадиях его развития требует обработки данных хроматографического анализа. Оценка состояния маслонаполненного оборудования осуществляется, как правило, на базе четырех критериев: предельных концентраций, скорости нарастания концентрации газов, отношений концентраций газов, критерия равновесия.

Первый критерий позволяет судить по значению превышения предельных концентраций о характере внутренних дефектов. Так, сильные повреждения изоляции характеризуются высокой концентрацией водорода и ацетилена и обычно сопровождаются наличием углекислого газа. Относительно большая концентрация насыщенных и ненасыщенных углеводородов
,
,
, (кроме
) в сочетании с небольшим процентом
указывает на тепловое разложение масла вследствие перегрева металлических частей. Если присутствует заметное количество СО и
, то это означает, что происходит разложение целлюлозы. Резкое увеличение
и
свидетельствует о сильном локальном перегреве, сопровождающемся обугливанием масла. Если содержание
в 10–20 раз больше чем СО при отсутствии других газообразных продуктов разложения, то причиной является термическое разложение целлюлозы. При высоких температурах обнаруживается небольшое количество
, а содержание кислорода заметно снижено. Наличие водорода и небольшого содержания этилена и
показательно для частичных разрядов. В случае слабого искрения обнаруживается небольшое количество
. Присутствие
говорит о развивающемся дефекте внутри трансформатора, который необходимо вывести из эксплуатации и осмотреть.

При втором критерии контролируется скорость нарастания концентраций газов. Если прирост содержания газов составляет более 10 % в месяц, трансформатор ставится на учащенный контроль. Достоверность оценки состояния с помощью этого критерия значительно выше по углеводородным газам и СО, чем по водороду и оксиду углерода, потери которых в пробе масла иногда соизмеримы с численными значениями этого критерия.

Третий критерий дает возможность использовать три отношения пар газов:
/
,
/
,
/
. Например условия
/
<<0,1 и
/
>1 указывают на дефект термического характера, а отношение
/
характеризует температуру перегрева. Наиболее частыми причинами упомянутых отношений являются возникновение дефектов в изоляции трансформаторного железа, нагрев и выгорание контактов РПН, нарушение изоляции стяжных шпилек и ярмовых балок с образованием короткозамкнутого контура, нагрев контактов соединений отводов низкого напряжения.

Четвертый критерий основан на сопоставлении результатов анализа масла из газового реле и из пробы. Используется в случаях срабатывания газовой защиты. На базе этого критерия делается заключение о возможности включения трансформатора в работу и определяется дефект электрического характера, когда повторное включение трансформатора могло бы привести к увеличению очага повреждения.

Перспективным направлением применения указанных критериев является разработка алгоритмов для реализации автоматизированных систем оценки состояния маслонаполненного оборудования. Следует отметить универсальность метода и растущую с увеличением напряжения эффективность его использования.

Метод контроля диэлектрических характеристик изоляции . Основан на измерении диэлектрических характеристик, к которым относятся токи утечки, величины емкости, тангенс угла диэлектрических потерь (tg ) и др. В основе контроля тока утечки лежит измерение тока, проходящего через твердую изоляцию при наличии напряжения. Известны два метода контроля. В первом, прямом методе измеряется модуль комплексной проводимости изоляции или ее емкость. Метод требует регистрации долей процента в изменении контролируемого параметра, применения различных схем повышения чувствительности и помехоустойчивости, что является его недостатком. Во втором методе сравниваются емкость и tg  однотипного электрооборудования с помощью схемы Шеринга. Метод требует наличия специальных измерительных выводов изолированной от земли конструкции. Он может использоваться для контроля за высоковольтными измерительными трансформаторами и конденсаторами связи.

Метод контроля разрядов . Все большее распространение в качестве показателя состояния изоляции электрооборудования получает использование разрядов. Известные методы измерения характеристик разрядов можно разделить на измерение частичных, пазовых и поверхностных разрядов и на электрические и неэлектрические методы. Методы применяются на напряжениях 110 кВ и выше в трансформаторах и электрических машинах.

Исследуются зависимости уровня интенсивности частичных разрядов в изоляции электрических машин от тепловых и механических воздействий. Анализируются данные для выявления связей между характеристиками частичных разрядов и сроками службы изоляции. Измерение частичных разрядов позволяет контролировать состояние изоляции во время испытаний и выявлять ее предаварийное состояние. Наличие частичных разрядов определяется по появляющимся импульсам напряжения и по изменениям электромагнитного поля во внешней цепи с помощью электромагнитного датчика. Известны устройства, контролирующие амплитуду и частоту следования импульсов в определенных диапазонах частот.

Основные трудности применения метода частичных разрядов связаны с наличием помех, обусловленных коммутациями и переходными процессами в первичных цепях установки, наличием коронных разрядов, радиопомех и т.д. Проблема измерения сигнала и его отделения от помех не всегда разрешима. Эффективность использования контроля частичных разрядов увеличивается с ростом рабочего напряжения, так как, с одной стороны, растут напряженность электрического поля и вероятность возникновения дефектов, с другой – появляется возможность отказаться от испытаний повышенным напряжением.

Выявлять пазовые разряды, искрения и образования дуг целесообразно и в обмотках крупных электрических машин под нагрузкой. Причины возникновения разрядов: ослабление пазовых клиньев, истирание и усадка подклиновых прокладок между стержнями обмоток статора, обрыв элементарных проводников, вибрация пластин гибких выводов и др. Выявить искровой, тлеющий и дуговой разряды можно с помощью, например, индуктивных датчиков. Выявить разряды можно также с помощью проводящих электродов, наложенных на изоляцию, емкостных датчиков, подключаемых к нейтрали и линейному выводу, или антенны, устанавливаемой на роторе машины, высокочастотного трансформатора, расположенного в цепи заземления нейтрали, и измерителя радиопомех.

Дефекты стержневых изоляторов, такие как трещины и локальные проводящие загрязнения, являются источниками поверхностных разрядов. Образование поверхностных разрядов сопровождается излучением в звуковом, оптическом и радио диапазонах. Известен метод оптического контроля излучения поверхностных разрядов с помощью электронно-оптического дефектоскопа. Он основан на регистрации пространственно-временного распределения яркости свечения и определении по ее характеру дефектных изоляторов. Для этих же целей с разной эффективностью применяют радиотехнический и ультразвуковой методы, а также метод контроля ультрафиолетового излучения с помощью электронно-оптического дефектоскопа "Филин". Данный принцип можно применить и для выявления таких дефектов, как обрыв стержней ротора асинхронного электродвигателя, образование дуги в КРУ и т.п.

Описанные методы не дают однозначной связи уровня и характера контролируемых параметров с характером и местом повреждения. Они универсальны по принципу и требуют индивидуального подхода к каждому объекту и специальных экспериментальных исследований.

Метод вибродиагностики . Для контроля за техническим состоянием механических узлов большое значение имеет связь параметров объекта с таким интегральным признаком, как спектр частот вибрации. Всякое параметрическое возбуждение смещает спектр. Это и используется в качестве признака. Оценка состояния по смещению низкочастотных составляющих спектра менее эффективна.

Электрофизический метод контроля . Перспективным направлением диагностики электрооборудования является применение электрофизических методов контроля. Достоинство таких методов – быстрое получение первичной информации, удобство ее передачи и представление в виде сигнала отклика. Легко встраиваются датчики в объект, сравнительно проста аппаратурная реализация, хорошие возможности настройки на различные электрофизические эффекты, высока эффективность выявления дефектов. Легко поддаются автоматизации и реализации на ЭВМ.

Методическую основу использования электрофизических методов составляет принцип наблюдаемости, а носителями информации являются электрофизические эффекты, возникающие при активизации физических процессов. По способам проявления, вывода и обработки информации эффекты такого типа можно разделить на интегральные эффекты и связанные с ними переходные процессы, эффекты нелинейности, флуктуационные эффекты и шумы.

Использование электрофизических эффектов производится на основе определения способа проявления дефекта или дефектообразующего фактора в виде конкретного физического процесса и возможности наблюдения за этим процессом внешними средствами. Эта возможность обусловливается силой проявления эффекта и разрешающей способностью применяемых измерительных средств.

Техническая диагностика - область знаний, охватывающая теорию, методы и средства определения технического состояния объекта. Назначение технической диагностики в обшей системе технического обслуживания - снижение объема затрат на стадии эксплуатации за счет проведения целевого ремонта.

Техническое диагностирование - процесс определения технического состояния объекта. Оно подразделяется на тестовое, функциональное и экспресс-диагностирование.

Периодическое и плановое техническое диагностирование позволяет:

    выполнять входной контроль агрегатов и запасных узлов при их покупке;

    свести к минимуму внезапные внеплановые остановки технического оборудования;

    управлять старением оборудования.

Комплексное диагностирование технического состояния оборудования дает возможность решать следующие задачи:

    проводить ремонт по фактическому состоянию;

    увеличить среднее время между ремонтами;

    уменьшить расход деталей в процессе эксплуатации различного оборудования;

    уменьшить объем запасных частей;

    сократить продолжительность ремонтов;

    повысить качество ремонта и устранить вторичные поломки;

    продлить ресурс работающего оборудования на строгой научной основе;

    повысить безопасность эксплуатации энергетического оборудования:

    уменьшить потребление ТЭР.


Тестовое техническое диагностирование - это диагностирование, при котором на объект подаются тестовые воздействия (например, определение степени износа изоляции электрических машин по изменению тангенса угла диэлектрических потерь при подаче напряжения па обмотку двигателя от моста переменного тока).

Функциональное техническое диагностирование - это диагностирование, при котором измеряются и анализируются параметры объекта при его функционировании но прямому назначению или в специальном режиме, например определение технического состояния подшипников качения по изменению вибрации во время работы электрических машин.

Экспресс-диагностирование - это диагностирование по ограниченному количеству параметров за заранее установленное время.

Объект технического диагностирования - изделие или его составные части, подлежащие (подвергаемые) диагностированию (контролю).

Техническое состояние - это состояние, которое характеризуется в определенный момент времени при определенных условиях внешней среды значениями диагностических параметров, установленных технической документацией на объект.

Средства технического диагностирования - аппаратура и программы, с помощью которых осуществляется диагностирование (контроль).

Встроенные средства технического диагностирования - это средства диагностирования, являющиеся составной частью объекта (например, газовые реле в трансформаторах на напряжение 100 кВ).

Внешние устройства технического диагностирования - это устройства диагностирования, выполненные конструктивно отдельно от объекта (например, система виброконтроля на нефтеперекачивающих насосах).

Система технического диагностирования - совокупность средств, объекта и исполнителей, необходимая для проведения диагностирования по правилам, установленным технической документацией.

Технический диагноз - результат диагностирования.

Прогнозирование технического состояния это определение технического состояния объекта с заданной вероятностью на предстоящий интервал времени, в течение которого сохранится работоспособное (неработоспособное) состояние объекта.

Алгоритм технического диагностирования - совокупность предписаний, определяющих последовательность действий при проведении диагностирования.

Диагностическая модель - формальное описание объекта, необходимое для решения задач диагностирования. Диагностическая модель может быть представлена в виде совокупности графиков, таблиц или эталонов в диагностическом пространстве.


Существуют различные методы технического диагностирования:

Реализуется с помощью лупы, эндоскопа, и других простейших приспособлений. Этим методом пользуются, как правило, постоянно, проводя внешние осмотры оборудования при подготовки его к работе или в процессе технических осмотров.

Виброакустический метод реализуется с помощью различных приборов для измерения вибрации. Вибрация оценивается по виброперемещению, виброскорости или виброускорению. Оценка технического состояния этим методом осуществляется по общему уровню вибрации в диапазоне частот 10 - 1000 Гц или по частотному анализу в диапазоне 0 - 20000 Гц.


Реализуется с помощью . Пирометрами измеряется температура бесконтактным способом в каждой конкретной точке, т.е. для получения информации о температурном ноле необходимо этим прибором сканировать объект. Тепловизоры позволяют определять температурное поле в определенной части поверхности диагностируемого объекта, что повышает эффективность выявления зарождающихся дефектов.


Метод акустической эмиссии основан на регистрации высокочастотных сигналов в металлах и керамике при возникновении микротрещин. Частота акустического сигнала изменяется в диапазоне 5 - 600 кГц. Сигнал возникает в момент образования микротрещин. По окончании развития трещины он исчезает. Вследствие этого при использовании данного метода применяют различные способы нагружения объектов в процессе диагностирования.

Магнитный метод используется для выявления дефектов: микротрещин, коррозии и обрывов стальных проволок в канатах, концентрации напряжения в металлоконструкциях. Концентрация напряжения выявляется с помощью специальных приборов, в основе работы которых лежат принципы Баркгаузсна и Виллари.

Метод частичных разрядов применяется для выявления дефектов в изоляции высоковольтного оборудования (трансформаторы, электрические машины). Физические основы частичных разрядов состоят в том, что в изоляции электрооборудования образуются локальные заряды различной полярности. При разнополярных зарядах возникает искра (разряд). Частота этих разрядов изменяется в диапазоне 5 - 600 кГц, они имеют различную мощность и длительность.

Существуют различные методы регистрации частичных разрядов:

    метод потенциалов (зонд частичных разрядов Lemke-5);

    акустический (применяются высокочастотные датчики);

    электромагнитный (зонд частичных разрядов);

    емкостный.

Для выявления дефектов в изоляции станционных синхронных генераторов с водородным охлаждением и дефектов в трансформаторах на напряжение 3 - 330 кВ применяется хромотографический анализ газов . При возникновении различных дефектов в трансформаторах в масле выделяются различные газы: метан, ацетилен, водород и т.д. Доля этих растворенных в масле газов чрезвычайно мала, но тем не менее имеются приборы (хромотографы), с помощью которых указанные газы выявляются в трансформаторном масле и определяется степень развития тех или других дефектов.

Для измерения тангенса угла диэлектрических потерь в изоляции в высоковольтном электрооборудовании (трансформаторы, кабели, электрические машины) применяется специальный прибор - . Этот параметр измеряется при подаче напряжения от номинального до 1,25 номинального. При хорошем техническом состоянии изоляции тангенс угла диэлектрических потерь не должен изменяться в этом диапазоне напряжения.


Графики изменения тангенса угла диэлектрических потерь: 1 - неудовлетворительное; 2 - удовлетворительное; 3 - хорошее техническое состояние изоляции

Кроме того, для технического диагностирования валов электрических машин, корпусов трансформаторов могут использоваться следующие методы: ультразвуковой, ультразвуковая толщинометрия, радиографический, капиллярный (цветной), вихретоковый, механические испытания (твердометрия, растяжение, изгиб), рентгенографическая дефектоскопия, металлографический анализ.

Грунтович Н. В.

Примерный порядок технического диагностирования электроустановок потребителей. Критерии точности и достоверности практически не отличаются от аналогичных критериев оценки приборов и методов используемых при проведении любых измерений а технико-экономические критерии включают в себя объединенные материальные и трудовые затраты продолжительность и периодичность диагностирования. При проектировании диагностических систем необходимо разработать алгоритм диагностирования описывающий перечень порядок проведения элементарных проверок оборудования...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ЭКСПЛУАТАЦИЯ И РЕМОНТ ЭНЕРГОБОРУДОВАНИЯ (5 курс)

ЛЕКЦИЯ №11

Техническая диагностика электрооборудования в процессе эксплуатации.

3. Примерный порядок технического диагностирования электроустановок потребителей.

1. Основные понятия и определения.

Техническая диагностика - наука о распознавании состояния технической системы, включающая широкий круг проблем связанных с получением и оценкой диагностической информации.

Основной задачей технической диагностики является распознавание состояния технической системы в условиях ограниченной информации.

Иногда техническую диагностику называют безразборной, т. е. диагностикой, осуществляемой без разборки изделия.

При эксплуатации электрооборудования диагностирование применяется для определения необходимости и объема ремонта, сроков замены сменных деталей и узлов, стабильности регулировок, а также при поиске причин отказов.

Целью системы технической диагностики любого оборудования является определение фактического технического состояния оборудования для организации его правильной эксплуатации, технического обслуживания и ремонта, а также выявление возможных неисправностей на раннем этапе их развития.

Все виды затрат на функционирование системы технической диагностики должны быть минимизированы.

Плановая техническая диагностика проводится в соответствии с действующими нормами и правилами. Кроме того, она позволяет судить о возможности дальнейшей эксплуатации оборудования, когда оно отработало нормативный срок службы.

Внеплановая техническая диагностика оборудования проводится в случае обнаружения нарушений его технического состояния.

Если диагностика проводится во время работы оборудования, она называется функциональной.

В России и в других странах разработаны диагностические системы, основанные на различных физических и математических моделях, являющихся ноу-хау производителя. Поэтому детальное описание алгоритма и математического обеспечения таких систем в литературе, как правило, отсутствует.

В России созданием таких систем занимаются ведущие заводы - производители электрических машин и трансформаторов. Совместно с ведущими НИИ (ВНИИЭ, ВНИИЭлектромаш, ВНИЭМ, ВЭИ и др.). За рубежом работы по созданию диагностических систем координируются научно-исследовательским институтом электроэнергетики EPRI (США).

2. Состав и функционирование диагностических систем

Техническое диагностирование в соответствии с ГОСТ 27518 - 87 «Диагностирование изделий. Общие требования» должно обеспечивать решение следующих задач:

Определение технического состояния оборудования;

Поиск места отказа или неисправности;

Прогнозирование технического состояния оборудования.

Для работы системы диагностики необходимо установить е критерии и показатели, а оборудование должно быть доступны для проведения необходимых измерений и испытаний.

Основными критериями системы диагностики являются точное и достоверность диагностики, а также технико-экономические критерии. Критерии точности и достоверности практически не отличаются от аналогичных критериев оценки приборов и методов используемых при проведении любых измерений, а технико-экономические критерии включают в себя объединенные материальные и трудовые затраты, продолжительность и периодичность диагностирования.

В качестве показателей системы диагностики в зависимости решаемой задачи используют либо наиболее информативные параметры оборудования, позволяющие определить или прогнозировать его техническое состояние, либо глубину поиска места отказа или неисправности.

Выбранные диагностические параметры должны удовлетворять требованиям полноты, информативности и доступности их измерения при наименьших затратах времени и средств.

При выборе диагностических параметров приоритет отдается тем, которые удовлетворяют требованиям определения истинного технического состояния данного оборудования в реальных условиях эксплуатации. На практике обычно используют не один, а несколько параметров одновременно.

При проектировании диагностических систем необходимо разработать алгоритм диагностирования, описывающий перечень порядок проведения элементарных проверок оборудования, состав признаков (параметров), характеризующих реакцию объекта на соответствующее воздействие, и правила анализа и принятия решения по полученной информации.

В состав диагностической информации могут входить паспортные данные оборудования;

Данные о его техническом состояния на начальный момент эксплуатации;

Данные о текущем техническом состоянии с результатами измерений и обследований;

Результаты расчетов, оценок, предварительных прогнозов и заключений;

Обобщенные данные по парку оборудования.

Эта информация вводится в базу данных системы диагностики и может передаваться для хранения.

Средства технической диагностики должны обеспечивать надежное измерение или контроль диагностических параметров конкретных условиях эксплуатации оборудования. Надзор за средствами технической диагностики обычно осуществляется метрологической службой предприятия.

Различают четыре возможных состояния оборудования (рис. 1)

Исправное (отсутствуют любые повреждения),

Работоспособное (имеющиеся повреждения не мешают работе оборудования в данный момент времени),

Неработоспособное (оборудование выводится из эксплуатации, но после соответствующего технического обслуживания может работать в одном из предыдущих состояний),

Предельное (на этом этапе принимается решение о возможности дальнейшей эксплуатации оборудования после ремонта, либо о его списании).

Этапы функционирования системы технической диагностики в зависимости от состояния оборудования показана на рис. 1. Как следует из этой схемы, практически на каждом этапе работы оборудования проводится уточненная оценка его технического состояния с выдачей заключения о возможности его дальнейшего использования.

Рис. 1. Основные состояния оборудования:

1 — повреждение; 2 — отказ; 3 — переход в предельное состояние из-за неустранимого дефекта, морального старения и других факторов; 4— восстановление; 5 — ремонт

В зависимости от сложности и изученности оборудования результаты диагностики в виде заключений и рекомендаций могут быть получены либо в автоматическом режиме, либо после соответствующей экспертной оценки данных, полученных в результате диагностики оборудования.

Техническое обслуживание и ремонт в этом случае сводятся к устранению повреждений и дефектов, указанных в заключении но данным технического диагностирования или к нахождению места отказа.

О проведенных работах делаются соответствующие записи в документации, которая ведется на предприятии. Кроме того, результаты диагностики могут заноситься в соответствующие базы данных и передаваться другим субъектам системы диагностики.

Структурно система технической диагностики является информационно-измерительной системой и содержит датчики контролируемых параметров, линии связи с блоком сбора информации, блок обработки информации, блоки вывода и отображения информации, исполнительные устройства, устройства сопряжения с другими информационно-измерительными и управляющими системами (в частности, с системой противоаварийной автоматики, сигнал в которую поступает при выходе контролируемых параметров за установленные пределы). Система технической диагностики может проектироваться как самостоятельная, так и в качестве подсистемы в рамках уже существующей информационно-измерительной системы предприятия.

3. ПРИМЕРНЫЙ ПОРЯДОК ТЕХНИЧЕСКОГО ДИАГНОСТИРОВАНИЯ ЭЛЕКТРОУСТАНОВОК ПОТРЕБИТЕЛЕЙ (ПТЭЭП Приложение 2)

Исходя из данной примерной методики проведения технического диагностирования электроустановок Потребители составляют раздельно для основных видов электроустановок документ (ОСТ, СТП, регламент, и т. п.), включающий следующие разделы:

1. Задачи технического диагностирования:

Определение вида технического состояния;

Поиск места отказа или неисправностей;

Прогнозирование технического состояния.

2. Условия технического диагностирования:

Установить показатели и характеристики диагностирования;

Обеспечить приспособленность электроустановки к техническому диагностированию;

Разработать и осуществить диагностическое обеспечение.

3. Показатели и характеристики технического диагностирования.

3.1. Устанавливаются следующие показатели диагностирования:

Показатели точности и достоверности диагностирования;

Показатели технико-экономические.

Показатели точности и достоверности диагностирования приведены в таблице 1.

Показатели технико-экономические включают:

Объединенные материальные и трудовые затраты;

Продолжительность диагностирования;

Периодичность диагностирования.

3.2. Устанавливаются следующие характеристики диагностирования:

Номенклатура параметров электроустановки, позволяющих определить ее техническое состояние (при определении вида технического состояния электроустановки);

Глубина поиска места отказа или неисправности, определяемая уровнем конструктивной сложности составных частей или перечнем элементов, с точностью до которых должно быть определено место отказа или неисправности (при поиске места отказа или неисправности);

Номенклатура параметров изделия, позволяющих прогнозировать его техническое состояние (при прогнозировании техническое состояния).

4. Характеристика номенклатуры диагностических параметров.

4.1. Номенклатура диагностических параметров должна удовлетворять требованиям полноты, информативности и доступности измерения при наименьших затратах времени и стоимости реализации.

4.2. Диагностические параметры могут быть охарактеризованы приведением данных по номинальным и допускаемым значениям, точкам контроля и т. д.

5. Метод технического диагностирования.

5.1. Диагностическая модель электроустановки.

Электроустановка, подвергаемая диагностированию, задается в виде табличной диагностической карты (в векторной, графической или другой форме).

5.2. Правила определения структурных (определяющих) параметров. Этот параметр непосредственно и существенно характеризует свойство электроустановки или его узла. Возможно наличие несколько структурных параметров. Приоритет отдается тому (тем) параметру, который (которые) удовлетворяет требованиям определения истинного технического состояния данной электроустановки (узла) для заданных условий эксплуатации.

5.3. Правила измерения диагностических параметров.

Этот подраздел включает основные требования измерения диагностических параметров и имеющиеся соответствующие специфические требования.

5.4. Алгоритм диагностирования и программное обеспечение.

5.4.1. Алгоритм диагностирования.

Приводится описание перечня элементарных проверок объекта диагностирования. Элементарная проверка определяется рабочим или тестовым воздействием, поступающим или подаваемым на объект, а также составом признаков (параметров), образующих ответ объекта на соответствующее воздействие. Конкретные значения признаков (параметров), поручаемые при диагностировании, являются результатами элементарных проверок или значениями ответа объекта.

5.4.2. Необходимость программного обеспечения, разработки как конкретных диагностических программных продуктов, так и других программных продуктов для обеспечения функционирования в целом системы технического диагностирования определяется Потребителем.

5.5. Правила анализа и принятия решения, по диагностической информации.

5.5.1. Состав диагностической информации.

а) паспортные данные электроустановки;

б) данные о техническом состоянии электроустановки на начальный момент эксплуатации;

в) данные о текущем техническом состоянии с результатами измерений и обследований;

г) данные с результатами расчетов, оценок, предварительных прогнозов и заключений;

д) обобщенные данные по электроустановке.

Диагностическая информация вводится в отраслевую базу данных (при наличии таковой) и в базу данных Потребителя в соответствующем формате и структуре хранения информации. Методическое и практическое руководство осуществляет вышестоящая организация и специализированная организация.

5.5.2. В руководстве пользователю описывается последовательность и порядок анализа полученной диагностической информации, сравнения и сопоставления полученных после измерений и испытаний параметров и признаков; рекомендации и подходы при принятии решения по использованию диагностической информации.

6. Средства технического диагностирования.

6.1. Средства технического диагностирования должны обеспечивать определение (измерение) или контроль диагностических параметров и режимов работы электроустановки, установленных в эксплуатационной документации или принятых на данном предприятии в конкретных условиях эксплуатации.

6.2. Средства и аппаратура, применяемые для контроля диагностических параметров, должны позволять надежно определять измеряемые параметры. Надзор над средствами технического диагностирования должны вести метрологические службы соответствующих уровней функционирования системы технического диагностирования и осуществлять его согласно положению о метрологической службе.

Перечень средств, приборов и аппаратов, необходимых для технического диагностирования, устанавливается в соответствии с типом диагностируемой электроустановки.

7. Правила технического диагностирования.

7.1. Последовательность выполнения операций диагностирования. Описывается последовательность выполнения соответствующих измерений, экспертных оценок по всему комплексу диагностических параметров и характеристик, установленных для данной электроустановки представленных в диагностической карте. Содержание диагностической карты определяется типом электроустановки.

7.2. Технические требования по выполнению операций диагностирования.

При выполнении операций диагностирования необходимо соблюдение всех требований и указаний ПУЭ, настоящих Правил, Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок, других отраслевых документов, а также ГОСТов по диагностированию и надежности. Конкретные ссылки должны быть сделаны в рабочих документах.

7.3. Указания по режиму работы электроустановки при диагностировании.

Указывается режим работы электроустановки в процессе диагностирования. Процесс диагностирования может проходить во время функционирования электроустановки и тогда это - функциональное техническое диагностирование. Возможно диагностирование в режиме останова. Возможно диагностирование при форсированном режиме работы электроустановки.

7.4. Требования к безопасности процессов диагностирования и другие требования в соответствии со спецификой эксплуатации электроустановки.

Указываются общие и те основные требования техники безопасности при диагностировании, которые касаются той или иной электроустановки; при этом должны быть конкретно перечислены разделы и пункты соответствующих правил и директивных материалов.

Упоминается о необходимости наличия у организации, выполняющей работы по диагностированию, соответствующих разрешений.

Перед началом работ по диагностированию работники, в ней участвующие, должны получить наряд-допуск на производство работ.

В данном разделе должны быть сформулированы требования техники (безопасности при функциональном диагностировании и диагностировании при форсированном режиме работы электроустановки. Должны быть указаны и имеющиеся у данного Потребителя для конкретных условий эксплуатации данной электроустановки специфические требования.

8. Обработка результатов технического диагностирования.

8.1. Указания по регистрации результатов диагностирования. Указывается порядок регистрации результатов диагностирования, измерений и испытаний, приводятся формы протоколов и актов.

Даются указания и рекомендации по обработке результатов обследований, измерений и испытаний, анализу и сопоставлению полученных результатов с предыдущими, и выдаче заключения, диагноза. Даются рекомендации по проведению ремонтно-восстановительных работ.

Таблица 1.

Показатели достоверности и точности диагностирования электроустановок

Задача диагностирования

Результат

диагностирования

Показатели достоверности

и точности

Определение

вида технического состояния

Заключение в виде:

1. Электроустановка

исправна и (или) работоспособна

2. Электроустановка неисправна и(или) не

работоспособна

Вероятность того, что в результате диагностирования электроустановка

признается исправной (работоспособной) при условии, что она неисправна (неработоспособн a ).

Вероятность того, что в результате

диагностирования электроустановка

признается неисправной (неработоспособной) при условии, что она

исправна (работоспособна)

Поиск места

отказа или не исправностей

Наименование элемента (сборочной единицы) или группы

элементов, которые имеют неисправное состояние и место отказа или неисправностей

Вероятность того, что в результате диагностирования принимается решение об отсутствии отказа (неисправности) в данном элементе(группе) при условии, что данный отказ имеет место.

Вероятность того, что в результате диагностирования принимается решение о наличии отказа в данном элементе (группе) при условии, что данный отказ отсутствует

Прогнозирование технического состояния

Численное значение

параметров технического состояния на задаваемый период времени, в том числе и на данный момент времени. Численное значение остаточного ресурса (наработки). Нижняя граница вероятности безотказной работы по параметрам безопасности на задаваемый период времени

Среднеквадратическое отклонение прогнозируемого параметра. Среднеквадратическое отклонение прогнозируемого остаточного ресурса

Доверительная вероятность

Определение численных значений показателей диагностирования следует считать необходимым для особо важных объектов, установленных вышестоящей организацией, специализированной организацией и руководством Потребителя; других случаях применяется экспертная оценка, производимая ответственным электрохозяйство Потребителя.

Рис. 2. Этапы функционирования системы технической диагностики.

PAGE \* MERGEFORMAT 13

Другие похожие работы, которые могут вас заинтересовать.вшм>

6084. Техническая эксплуатация электрооборудования 287.48 KB
При определении объема работ для ЭТС необходимо физическое количество установленного в хозяйстве электрооборудования перевести в условное при помощи нормативных коэффициентов УЕЭ. В соответствии с этим различают индивидуальные и централизованные электротехнические службы ЭТС. Индивидуальную...
788. Техническая эксплуатация электрооборудования цеха обработки корпусных деталей 659.54 KB
В современных условиях эксплуатация электрооборудования требует глубоких и разносторонних знаний, а задачи создания нового или модернизации существующего электрифицированного технологического механизма или устройства решаются совместными усилиями инженеров и электротехнического персонала.
10349. Техническая диагностика СЭУ 584.21 KB
Эти требования удовлетворяются в той или иной мере на всех этапах существования объекта диагностирования ОД проектирование производство использование по назначению. В самом общем случае процесс технического диагностирования технического объекта предусматривает решение задач: 1 определения его действительного технического состояния; 2 поиска дефектов; 3 прогнозирования изменения технического состояния. В частных случаях в процессе диагностирования могут решаться отдельные из этих задач или их сочетания поскольку каждая из них...
18152. Основные средства используемые в учебно-тренировочном процессе - физическая, техническая и тактическая подготовка шестовиков 391.69 KB
Несмотря на значительные успехи в разработке методики технической подготовки прыгунов с шестом в настоящее время обучение прыжку остается достаточно сложной задачей для большинства тренирующихся в этом виде легкой атлетики. И для этого положения есть весомые основания: прыжок с шестом – сложное по координации действие выполняемое на подвижной опоре – шесте содержащее элементы гимнастики бега прыжков и лимитируемое временем выполнения движений требующих проявления значительных мышечных усилий. Для достижения этой цели необходимо решать...
2125. ОРГАНИЗАЦИЯ ЭКСПЛУАТАЦИИ. ЗАДАЧИ И МЕТОДЫ ТЕХНИЧЕСКОЙ ЭКСПЛУАТАЦИИ 9.71 KB
При текущем и плановопредупредительное обслуживании осуществляется: технический надзор за состоянием трассы и выполнением правил охраны общегосударственных средств связи; технический надзор за всеми сооружениями и действием устройств автоматики сигнализации и телемеханики; проведение профилактических; контроль за электрическими характеристиками кабеля; устранение выявленных неисправностей; обеспечение аварийного запаса кабеля арматуры и материалов в том числе кабеля облегченной конструкции для быстрого устранения повреждений на линии;...
6041. Классификация условий эксплуатации. Влияние условий эксплуатации на срок службы электродвигателей 161.8 KB
Классификация условий эксплуатации. Влияние условий эксплуатации на срок службы электродвигателей. Непрерывное диагностирование электрических машин. Классификация методов непрерывного диагностирования электрических машин.
6086. Диагностирование и испытание электрооборудования 58.34 KB
Назначение и виды испытаний электрооборудования. Диагностирование электрооборудования при проведении ТО и ТР Определение неисправностей и причин отказов простого электрооборудования у электротехнического персонала не вызывает особых затруднений...
11531. Электроснабжение ТОО «Аяз» и выбор электрооборудования 538.2 KB
Сети низкого напряжения промышленных предприятий отличаются большим числом электродвигателей, элементов пусковой и защитной аппаратуры и коммутационных аппаратов. В них расходуется огромное количество проводникового материала и кабельной продукции, поэтому рациональное построение цеховых электрических сетей имеет важное значение.
20727. Расчёт электрооборудования жилого здания 501.9 KB
В связи с этим инженер по специальности Электрооборудование и электроснабжение строительства должен обладать не только знанием но и умением применять новейшее электрооборудование для конкретных объектов строительства используя современные методики и правила а также действующую Нормативную документацию. Данные методические указания содержат базовые сведения для проектирования электрооборудования зданий: определение расчётных мощностей электрооборудования жилых зданий расчёт сечений электропроводящих жил кабелей и проводов по значениям...
12488. Электроснабжение электрооборудования ТП-82 13 микрорайона г. Братска 2.07 MB
Электрическая сеть – это совокупность устройств, которые служат для передачи и распределения электроэнергии от ее источников к электроприемникам. Источниками электроэнергии в энергосистеме являются тепловые, гидравлические, атомные и другие электростанции, независимо от места их размещения.

Методы и средства диагностирования систем электрооборудования автомобилей в эксплуатации

Электрооборудование современного автомобиля представляет собой разветвленную сеть последовательно или параллельно включенных источников и потребителей электрической энергии. Структурно ЭА состоит из шести систем (электроснабжения, пуска, зажигания, освещения и сигнализации, контроля и измерения, вспомогательного электрооборудования) , содержащих свои узлы и агрегаты (рис. 1.1).

В процессе эксплуатации начальное техническое состояние изделий ЭА изменяется (как правило, ухудшается) или происходит потеря работоспособности отдельных его узлов и агрегатов. По количеству неисправностей и трудоемкости их устранения изделия ЭА превалируют над другими системами (табл. 1) двигателя. Среди систем и агрегатов, обеспечивающих безопасность движения (ОВД), доля отказов изделий ЭА также велика

В настоящее время с целью восстановления изделий ЭА при операциях ТО и ремонта широко используются методы технической диагностики.

Система электроснабжения

Система электроснабжения предназначена для питания электрической энергией всех потребителей и поддержания постоянства напряжения в бортовой сети электрооборудования автомобиля. Источниками электрической энергии на автомобиле являются генератор и аккумуляторная батарея, включенные параллельно друг другу. Регулирование напряжения генератора в заданных пределах осуществляется регулятором напряжения.

К надежности работы и качеству электрической энергии в системе источников электрической энергии предъявляются высокие требования. Отклонение напряжения в бортовой сети автомобиля от расчетного не должно превышать ±3 %.

Колебание напряжения в пределах ±5 % от расчетного значения приводит к изменению светового потока на ±20 %, и срок службы ламп уменьшается в 2 раза.

Повышение регулируемого напряжения на 10 12 %

приводит к снижению срока службы аккумуляторной батареи в 2...2,5 раза. Надежность работы системы электроснабжения оказывает значительное влияние на экономичность работы автомобиля в эксплуатации.

На автомобилях, выпускаемых в настоящее время, устанавливают генераторы переменного тока. Примерно 20 % автомобилей, находящихся в эксплуатации, оснащены генераторами постоянного тока.

Генераторы переменного тока обладают свойствами самоограничения максимальной силы тока, а встроенные выпрямители препятствуют протеканию тока от аккумуляторной батареи по обмоткам статора. Поэтому с генераторами переменного тока работает только регулятор напряжения.

При поиске неисправностей систему электроснабжения можно разделить на генератор, регулятор напряжения (реле-регулятор), цепь заряда и цепь возбуждения. Визуальным симптомом неисправностей являются показания амперметра автомобиля.

При диагностировании необходимо проверить регулируемое напряжение и мощность, развиваемую генератором на определенных частотах вращения.

Однако с помощью измерения напряжения и тока выявить характерные неисправности генераторов переменного тока не представляется возможным. Большие возможности дает измерение ряда параметров с помощью осциллографа. С его помощью по характеристическим осциллограммам напряжения генератора определяют обрыв или замыкание обмотки статора на массу и пробой диодов выпрямителя. Кроме того, с помощью осциллографа можно оценить регулируемое напряжение реле-регулятора.

Для диагностирования генераторов и реле регуляторов непосредственно на автомобиле выпускается много приборов и стендов (см. разд. «Универсальные диагностические средства и комплексы»).

При проверке степени искрения щеток допускается искрение голубоватого цвета на 80 % рабочей поверхности щетки. Выскакивание искр из-под щеток недопустимо, оно указывает на недостаточное усилие прижатия щетки или износ коллектора. Желтое искрение свидетельствует об окислении или замасливании коллектора или щеток.

Усилие прижатия щетки пружиной можно измерить с помощью стрелочных весов. Для этого из щеткодержателя надо удалить одну щетку, а другой щеткой, оставшейся в щеткодержателе, нажать на чашку (рычаг) весов. Когда щетка выйдет из щеткодержателя на 2 мм, замеряют показание стрелки весов и сравнивают его с табличными данными (прил. 2). Аналогично проверяется и усилие прижатия другой щетки.

Натяжение приводных ремней генераторов может быть проверено с помощью приспособления НИИАТ К403.

При ЕО и ТО-1 приборы системы электроснабжения очищают от пыли и масла, проверяют надежность их крепления и натяжение приводного ремня. Углубленное диагностирование генераторов, реле-регуляторов и выпрямителей совмещают с ТО-2.

Система зажигания

Система зажигания представляет собой комплекс механических и электрических устройств, назначение которых - обеспечить надежность воспламенения топливно-воздушной смеси в цилиндрах двигателя в надлежащие моменты его рабочего цикла.

Исходя из назначения системы зажигания, основные требования к ней заключаются в том, чтобы:

вырабатывать напряжение, достаточное для пробоя искрового промежутка между электродами свечи;

сообщать искровому разряду энергию, необходимую для надежного воспламенения горючей смеси;

" воспламенять смесь в каждом цилиндре двигателя в моменты, соответствующие наивыгоднейшему углу опережения зажигания.

Основные процессы, происходящие в системе зажигания, имеют электрическую природу. Они протекают в двух связанных электрических цепях: первичной (низковольтной), включающей в себя аккумуляторную батарею, добавочный резистор, первичную обмотку катушки зажигания прерыватель и конденсатор; и вторичной, содержащей вторичную обмотку катушки зажигания, подавительный резистор, распределитель и свечи зажигания.

Состояние системы зажигания существенно влияет на динамические и экономические показатели автомобиля. Так, отклонение угла опережения зажигания от оптимального на 15...20° приводит к увеличению расхода топлива до 10 % и потере мощности двигателя до 15 %. Практика «оказывает, что до 30 % автомобилей, поступающих на ТО, имеют дефекты в элементах системы зажигания.

В настоящее время наряду с классической системой зажигания широко используются контактно-транзисторные и бесконтактные системы.

При ЕО и ТО-1 проверяются действие замка зажигания, состояние и крепление всех приборов, проводов, зажимов и изоляции. При ТО-2 осуществляется углубленное диагностирование. Важное место занимают при этом результаты внешнего осмотра. Например, исправная свеча должна быть сухой, без нагара на изоляторе, а цвет нижней части изолятора-красновато-коричневый. Светло-желтый или белый цвет изолятора свидетельствуют о перегреве свечи из-за пропуска газов в соединении ее с головкой блока. Если изолятор, корпус и электроды покрыты сухим слоем нагара - велико калильное число свечи, неправильно отрегулирован карбюратор, не соответствует требуемому сорт топлива.

Если вся ввертываемая часть свечи покрыта толстым блестящим слоем масла-велико калильное число свечи, неправильна установка зажигания, в цилиндры поступает богатая смесь или прорывается масло.

При перегреве свечи, белом изоляторе и корпусе, частично покрытом нагаром, причина --в раннем зажигании, низком калильном числе, бедной смеси и плохом охлаждении.

Обрыв или перегорание дополнительного сопротивления катушки зажигания

Отсутствие контакта в цепи выключатель зажигания - катушки зажигания

Исправность первичной цепи можно проверить на автомобиле с помощью контрольной лампы, один провод которой подключен на массу, а второй поочередно подключают к зажимам цепи. Зажигание при этом должно быть включено. Если первичная цепь исправна, а искры в зазоре между высоковольтным проводом катушки зажигания и массой отсутствуют, то неисправность - во вторичной цепи или разряжена аккумуляторная батарея.

Для выявления неработающей свечи во время работы четырехцилиндрового двигателя поочередно отключают свечи, вынимая из боковых выводов крышки распределителя высоковольтные провода. При отключении работающей свечи перебои в работе двигателя увеличиваются, а отключение неработающей свечи не изменит характер работы двигателя. Неработающая свеча всегда нагрета менее, чем остальные.

Крышки распределителя не должны иметь трещин, следов пробоя изоляции. Влага, масло и.грязь недопустимы. Подавителькые резисторы проверяют измерением их сопротивления, которое должно составлять 7...14 Ом.

Степень окисления контактов прерывателя определяют по падению напряжения на них. Для этого один провод вольтметра соединяют с корпусом прерывателя, а другой- с его зажимом (вольтметр включен параллельно контактам). При замкнутых контактах (зажигание включено) падение напряжения на них не должно превышать 0,1 В. Превышение этой величины свидетельствует о необходимости зачистить контакты.

От величины зазора между контактами прерывателя зависят многие показатели работы системы зажигания. При уменьшении зазора возрастают искрение и перенос металла с подвижного на неподвижный контакт (эрозия), уменьшается величина вторичного напряжения и, как следствие, возникают пропуски искрообразования в свечах. Увеличенный зазор приводит к уменьшению времени (т. е. угла) замкнутого состояния контактов и, следовательно, к уменьшению первичного тока и вторичного напряжения. Последнее, как и в предыдущем случае, обусловит пропуск искрообразования, особенно на быстроходных режимах. При этом существенно возрастает вибрация контактов.

Зазор между контактами можно измерить щупом. Однако вследствие эрозии на одном контакте будет лунка, а на другом - выступ: фактическая величина зазора будет больше, чем измеренная щупом. Поэтому на практике целесообразно измерять угол поворота кулачка, в пределах которого контакты замкнуты (угол замкнутого состояния контактов - УЗСК). Измерение УЗСК заключается в оценке средней величины силы тока через контакты при постоянной частоте вращения вала распределителя. При этом регистрирующий амперметр может быть проградуирован и непосредственно в градусах. Для четырехцилиндровых двигателей УЗСК составляет 46...50е (для двигателей ВАЗ-52...58°), шестицилиндровых - 38...43°, восьмицилиндровых - 28...32°.

Плохое крепление конденсатора к корпусу распределителя, снижение его емкости при подборе диэлектрика (без замыкания обкладок) также приводят к повышению искрения между контактами, их окислению, снижению первичного тока и вторичного напряжения и, как следствие, к перебоям в зажигании. Этот же симптом характерен для пробоя изоляции вторичной обмотки катушки зажигания и нарушения зазора между электродами свечи. Для проверки конденсатора и катушки зажигания высоковольтный провод вынимают из центрального ввода подводят его к массе с зазором 7 мм, снимают крышку и ротор распределителя и включают зажигание. Вращая рукояткой коленчатый вал двигателя, наблюдают за искрением. При неисправном конденсаторе между. контактами - сильное искрение, а между наконечником высоковольтного провода и «массой» искры либо не возникает, либо она будет нерегулярной при зазоре меньше 4 мм. Последнее характерно и для случая пробоя изоляции вторичной обмотки катушки. При этом, однако, искрение между контактами прерывателя отсутствует.

Трещины и пробой изоляции крышки распределителя при загрязнении и влаге создают каналы утечки тока высокого напряжения. Это вызывает несвоевременное воспламенение рабочей смеси, что проявляется в неравномерной работе двигателя или невозможности его пуска. Неправильная установка зажигания снижает мощность, экономичность и ухудшает устойчивость и приемистость работы двигателя. Потеря упругости пружин центробежного регулятора вследствие усталости металла или поломка одной из его пружин резко увеличивает угол опережения зажигания на малых и средних режимах работы. В результате появляются детонационные стуки в двигателе (особенно при движении груженого автомобиля на малой скорости). Угол опережения зажигания увеличивается и при увеличении зазора между контактами прерывателя.

Нарушение герметичности вакуумного регулятора из-за повреждения диафрагмы или прокладки под штуцером, трещины в крышке или неплотного соединения трубопровода снижает разрежение. Тогда при изменении нагрузки угол опережения зажигания не изменяется, что снижает экономичность двигателя.

Правильность установки начального угла опережения зажигания, а также оценку работоспособности центробежного и вакуумного регуляторов осуществляют с помощью специального стробоскопического прибора (см. табл. 15), выполненного в виде пистолета. Питание прибора- от бортовой сети проверяемого автомобиля. Прибор подсоединяется тремя клеммами: двумя - к аккумуляторной батарее, одной - к свече первого цилиндра двигателя.

Перед измерениями необходимо отрегулировать зазор между контактами прерывателя, пустить двигатель и прогреть его до температуры охлаждающей жидкости 70...90 °С; отсоединить от корпуса вакуумный автомат и установить минимальную частоту вращения коленчатого вала.

Включив прибор (стробоскопическая лампа начнет давать вспышки), направляют световой луч на подвижную контрольную метку. Расположение меток приведено в табл.

Вследствие стробоскопического эффекта при правильной установке зажигания подвижная метка будет казаться неподвижной и должна находиться против фактически неподвижной метки. Если метки не совпадают, необходимо отрегулировать зажигание. Для этого, не останавливая двигатель, нужно ослабить стяжной винт установочной скобы и повернуть распределитель (влево или вправо) до совпадения установочных меток; стяжной винт затянуть. Совпадения меток можно добиться и регулировкой октан-корректора. Таким образом, стробоскопический эффект позволяет наблюдать на всех режимах работы двигателя сдвиг между моментом зажигания и ВМТ.

Работоспособность центробежного автомата проверяют плавно увеличивая частоту вращения коленчатого вала. При исправном центробежном автомате подвижная метка будет плавно смещаться относительно неподвижной. Смещение метки рывками свидетельствует о заедании осей или заклинивании грузиков регулятора.

Работоспособность вакуумного автомата проверяется при частоте вращения коленчатого вала 2000...2500 мин-1 путем быстрого подключения трубки вакуумного регулятора. При этом из-за появившегося разрежения подвижная метка должна резко отклониться. Если она осталась в первоначальном состоянии, то это свидетельствует о засорении трубки или распылителя, отсутствии герметичности или повреждении пружины мембраны. Допустимые значения углов опережения зажигания приведены в прил. 4.

Другим методом определения угла опережения зажигания является контроль величины разрежения во впускном трубопроводе. Следует учесть, что оптимальной установке первоначального угла опережения зажигания соответствует максимальная величина разрежения во впускном трубопроводе.

В бесконтактных системах этот вид неисправности вообще исключается. Однако при диагностировании электронных систем зажигания категорически запрещается:

замыкать накоротко выводные клеммы, а также производить какие-либо переключения соединительных проводов, не предусмотренные инструкцией;

оставлять включенным зажигание при неработающем двигателе.

Приборы диагностирования электрооборудования

Отечественной промышленностью и за рубежом выпускаются приборы для диагностирования элементов только системы зажигания (табл. 15), а также комбинированные устройства и стенды, в которых элементы системы зажигания диагностируют наряду с другими (п. 3.1).

Принципы диагностирования всей системы зажигания вне зависимости от конструкции самой системы (контактная, бесконтактная) и применяемого оборудования и приборов являются едиными.

Подключение прибора в цепь зажигания или отключение разрешается производить только при неработающем двигателе, а прикасаться к индуктивному датчику во время измерений воспрещается.

Перед началом измерений необходимо проверить и отрегулировать зазор между контактами прерывателя и УЗСК.

Переносной прибор Э213 предназначен для проверки распределителей 4-, 6-, 8-цилиндровых двигателей, контроля сопротивления изоляции, измерения емкости конденсаторов и частоты вращения.

Стрелочный прибор с разнесенными шкалами типа SUN QST-500 предназначен для диагностирования системы зажигания по всем параметрам. Стробоскопический пистолет входит в комплект прибора наряду с индуктивными датчиками, устанавливаемыми на первом цилиндре. Ему аналогичен и «диагностический чемодан» Элкон-5220.

Описанная выше регистрация кривых напряжения переходных процессов в системе зажигания с помощью осциллографа обладает рядом недостатков (низкая точность измерения параметров, большие затраты времени, субъективность оператора). Указанные недостатки могут быть устранены с помощью устройства, в котором происходят измерение напряжений отдельных участков характеристической кривой системы зажигания, измерение временных интервалов характеристической кривой, сравнение измеренных параметров с их допустимыми значениями, анализ параметров неисправностей и выдача результатов диагноза.

На рис. 2.10 приведена блок-схема автоматизированной диагностической установки, использующей универсальную вычислительную машину (УВМ) М-6000 , лишенной указанных недостатков. В установке применен датчик угла поворота ДУП, который исключает необходимость применения стробоскопа для определения верхней мертвой точки первого цилиндра и, кроме того, позволяет определить ВМТ остальных цилиндров и выдает одноградусные импульсы поворота коленчатого вала двигателя. Сигналы с емкостного датчика вторичного напряжения ДВН поступают в преобразователь информации ПИ, состоящего из преобразователя импульсного напряжения в аналоговое Ua, построенного на усилителях; измерителя интегрального напряжения £/ин, определяющего площадь напряжения разряда, построенного на усилителе; формирователей длительности разряда.Рдл и конца разряда FK, построенных на интегральных схемах.

Сигналы с преобразователя информации поступают в УВМ, где аналоговая форма преобразуется в цифровую, а импульсы длительности разряда-во время. Дальнейшая их обработка происходит согласно алгоритму, изложенному в гл. 1 (см, рис. 1,3).

Разработаны принципиально новые формирователи сигнала первой свечи ФСПС и сигнала прерывателя ФСПр, построенные также на интегральных схемах. Формирователь этого типа нечувствителен к дребезжанию контактов прерывателя, что предотвращает появление ложных импульсов.

Система освещения и сигнализация

Приборы системы освещения и сигнализации (СО и С) относятся к элементам., обеспечивающим безопасность движения. Их проверка производится водителем на линии и контрольным механиком ежедневно на выпуске-возврате автомобиля, как правило, субъективными методами или при проведении ТО-1. и ТО-2 с использованием инструментальных средств.

При ежедневном обслуживании рекомендуется проверять рассеиватели, исправность всех приборов СО и С в различных положениях центрального и ножного переключателя света, а также переключателя указателей поворота, убедиться в исправности контрольных ламп.

При ТО-1 рекомендуется выполнить операции ЕО и проверить: крепление фар, подфарников, заднего фонаря, центрального переключателя света, переключателя указателей поворота и сигналов, крепление и состояние изоляции проводов фар и подфарников, надежность крепления наконечников проводов с клеммами.

При ТО-2 выполняются операции ТО-1, проверяются работа звукового сигнала, установка световых пучков и сила света фар, крепление проводов и переключателей.

Автономные осветительные приборы современного автомобиля должны отвечать двум в значительной степени противоречивым требованиям: создать возможность максимальной дальности видимости и освещать дорогу без ослепления встречного водителя.

В настоящее время распространение получили два типа светораспределения под условным названием «американское» (на автомобилях старых выпусков) и «европейское». Не отличаясь принципами создания режима дальнего света, они отличаются параметрами, определяющими светораспределение ближнего света. На автомобилях, оснащенных фарами с «американским» светораспределением, регулировка осуществляется по дальнему свету. На автомобилях, оборудованных фарами типа «европейский свет», имеющих как двух-, так и четырехфарную системы освещения, предусмотрена регулировка по ближнему свету. Для наиболее эффективной работы приборов излучаемые световые пучки, кроме соответствия установленным нормативам, должны быть жестко геометрически ориентированы относительно автомобиля. Причем чем выше качественные показатели световых приборов, тем более строго должна выдерживаться ориентация.

Вспомогательное оборудование

К приборам вспомогательного электрооборудования автомобиля относятся стеклоочистители, отопители, приводы подъема стекол, кондиционеры, коммутационная аппаратура и др. Работоспособность многих этих приборов зависит от приводных электродвигателей, которые должны проверяться при ТО-1 и ТО-2.

При «заедании» вала якоря в подшипниках частота вращения якоря уменьшается, а сила тока в цепи электродвигателя возрастает до значения, достаточного для срабатывания предохранителя.

Исправность предохранителя и различного рода переключателей можно проверить замыканием выводных зажимов проводником. Если цепь тока при этом восстанавливается, то предохранитель или коммутирующий элемент неисправен.

Короткое замыкание в цепи плавкого предохранителя вызывает его перегорание. Термобиметаллический же предохранитель в случае замыкания периодически размыкает и замыкает цепь, что сопровождается либо миганием ламп, либо характерными щелчками. Отыскивая неисправность в проводке с помощью контрольной лампы (вольтметра), нужно двигаться от потребителя к источнику тока (аккумуляторной батарее)

Электрооборудование электрооборудования автомобиля , негерметичность системы питания, нарушение герметичности...

Похожие публикации