Автомобильный портал

Какие существуют современные тормозные системы для автомобилей. Схема тормозной системы. Виды и принцип работы тормозной системы Виды тормозных систем

Тормозная система автомобиля служит для снижения его скорости или полной остановки.

По назначению выделяют следующие типы тормозных систем: рабочую, резервную и стояночную.

1. Рабочая (основная) тормозная система предназначена для снижения скорости движения автомобиля и для его остановки. Часть системы, которая переносит усилие с педали тормоза на тормозные колодки, называют тормозным приводом.

а. Механический привод осуществляется при помощи тросов и рычагов: механический, пневматический, гидравлический и комбинированный. Из-за его малой эффективности и неудобства обслуживания в современном автомобилестроении практически не используется. Существуют различные виды тормозных приводов.

б. Пневматический привод в своей работе использует разрежение воздуха. В настоящее время распространен на грузовиках и автобусах.

в. Гидравлический привод приводится в действие благодаря жидкости на основе спирта, гликоля или силикона. Распространен повсеместно.

д. Комбинированный привод использует несколько типов энергоносителей и, ввиду своей сложности, не применяется без крайней необходимости.

2. Резервная (запасная) тормозная система включается при неисправности рабочей системы. В современном автомобилестроении, как правило, выполнена не автономно, а в составе одной из частей рабочей системы.

3. Стояночная тормозная система , в первую очередь, служит для предотвращения нежелательного самопроизвольного движения автомобиля во время стоянки.

Кроме того, ее используют для облегчения трогания в гору, при длительной остановке в «пробке», для ухода в управляемый занос или при полном отказе рабочей тормозной системы.

Эта система может быть реализована механическим способом (тросы к задним колесам или к трансмиссии) или посредством гидравлики.

История развития тормозных механизмов.

Самый примитивный тормозной механизм, использовавшийся в гужевых повозках,представлял собой деревянную колодку, затормаживающую непосредственно рабочую поверхность колеса.

Эта колодка приводилась в рабочее положение ручным рычагом.

Этот механизм посредством колодок воздействовал на металлический обод колеса и приводился в действие тросами. Ближайший современный аналог - это тормозные механизмы велосипедов.С распространением резиновых шин данный способ торможения стал абсолютно неэффективным, что привело к появлению клещевого колодочного тормоза.

Параллельно с колодочным тормозом появился ленточный механизм.

Гибкая металлическая лента охватывала тормозной барабан. При торможении, посредством рычагов, лента натягивалась, что приводило к затормаживанию колес. Данная система довольно долго использовалась еще и в качестве стояночного тормоза.

В 1910-20-х годах стали появляться барабанные тормоза, которые по своему принципу работы соответствуют современным. Однако, за это время существенно изменились тормозные приводы, пройдя свой путь от раздельного механического до совмещенного гидравлического. Впервые гидравлическая система была применена в 1921 году Малкольмом Локхидом.

Примерно в конце 1920-х конструкторы начали реализовывать системы, снижающие усилие на педаль тормоза. Ввиду сложности конструкции, усилители тормозов использовались только на автомобилях класса люкс.

Их широкое распространение пришлось на 1950-е годы. Этому развитию послужило увеличение скоростных характеристик и динамических качеств автомобилей.

В конце 1950-х начали серийно устанавливать дисковые тормоза. В данной системе колодки прижимаются не к внутренней поверхности барабана, а к наружным плоскостям диска. Этот тормоз конструктивно проще барабанного, обладает лучшей эффективностью, меньшей массой, и он проще в обслуживании. В усовершенствованном виде такие тормоза используются до сих пор.

Гидравлическая тормозная система.

Получила распространение в 1930-е годы, как альтернатива механическим тормозам. Системы того времени отличались простотой своей конструкции. В тормозном приводе использовались: главный тормозной цилиндр, тормозные трубки и 2 рабочих цилиндра (по одному на каждое заднее колесо). В качестве жидкости использовалось растительное масло. Совершенствование данной системы проходило сразу в нескольких направлениях. Улучшение качества энергоносителя - переход от жидкости на основе растительного масла к жидкости на основе спирта и глицерина, а затем к гликолевым и силиконовым жидкостям. Следующее улучшение - практически повсеместное появление усилителя тормозов - сначала гидро-вакуумного, затем вакуумного. И самое важное нововведение - появление двухконтурной тормозной системы. Дело в том, что при потере герметичности любого из элементов одноконтурной системы, тормоза полностью теряли свою работоспособность. Если же сломается какой-либо элемент двухконтурной системы, то в качестве резервной тормозной системы продолжит работать один из контуров.

Двухконтурная гидравлическая тормозная система.

Существует несколько основных способов разделить тормозную систему на контуры: поосевой, диагональный и полный. Рассмотрим каждый подробнее.

1. Поосевая система - один контур на передние колеса, второй контур - на задние. Это наиболее простой способ, часто применяемый на автомобилях классической компоновки, например, ВАЗовская «классика». К его достоинствам можно отнести отсутствие увода в сторону при торможении с одним рабочим контуром. Однако, есть важный недостаток - при обрыве переднего контура эффективность торможения значительно падает (примерно на 65%).

2. Диагональная система - один контур на переднее левое и заднее правое колеса, второй контур - на переднее правое и заднее левое. К положительным сторонам этого способа можно отнести равномерное распределение нагрузки между контурами. То есть, не зависимо от того, какой контур выйдет из строя, эффективность торможения упадет ровно на 50%.

Главный недостаток - увод от прямолинейного движения при торможении после обрыва одного из контуров. Это связано с тем, что эффективность работы передних тормозных механизмов значительно выше, чем в задних. Данный тип разделения применим в большинстве современных автомобилей.

3. Полная система - значительно сложнее двух предыдущих. Один из контуров работает на все 4 колеса, второй контур - только на передние. При этом, передние тормозные механизмы имеют минимум по 2 полностью независимых цилиндра. Система нашла свое применение на автомобилях Москвич, Волга, Нива.

Выше говорилось, что эффективность передних тормозов легковых автомобилей значительно выше, чем в задних. Поскольку при торможении автомобиля центр тяжести смещается вперед, нагрузка на переднюю ось возрастает, а на заднюю ось - уменьшается. Соответственно задние колеса имеют худшее сцепление с дорогой, чем передние и при большом тормозном усилии могут сорваться в юз. Это особенно опасно на скользкой дороге или при торможении во время прохождения поворота.

Один из самых простых способов борьбы с этой проблемой - применение на задней оси автомобиля тормозных систем со сниженной эффективностью. Например, на переднюю ось устанавливаются тормозные диски на 14 дюймов, а на заднюю - на 12. Более надежный способ - применение регулятора тормозных усилий. Впервые в отечественном автомобилестроении данный элемент применен на Жигулях ВАЗ-2101. Принцип его работы был не совсем понятен рядовым автолюбителям, поэтому его в народе прозвали «колдун». Регулятор имеет в своей конструкции клапан, частично перекрывающий тормозную жидкость и снижающий ее давление. Регулятор обычно закрепляют под днищем автомобиля, а от клапана ведут тягу к задней балке. При торможении автомобиля его задняя подвеска разгружается, увеличивается расстояние между днищем и балкой, а тяга перекрывает клапан, снижая тормозное усилие. Существуют регуляторы, снижающие усилие постоянно, не зависимо от загруженности подвески. Такие регуляторы ранее применялись на ВАЗ-1111; в настоящее время нашли применение на корейских автомобилях эконом-класса.

Стояночная тормозная система.

На большинстве современных легковых автомобилей применяют механический стояночный тормоз, представляющий собой рычаг и систему тросов.

Если задние тормоза барабанные, то тросы присоединяются к распоркам колодок. При наличии на задней оси дисковых механизмов, осуществить механический способ подключения стояночной тормозной системы сложно, поэтому часто применяют отдельные барабанные стояночные механизмы.

В автоспорте нашел применение гидравлический тормозной привод. При его применении давление жидкости передается на задний контур поосевой тормозной системы или на задние магистрали диагональной системы (причем, в обход регулятора тормозных усилий). Гидравлический привод обладает большей эффективностью, чем механический, и позволяет точно дозировать усилие. Поэтому его используют для увода автомобиля в управляемый занос. Однако, эта система не подходит для повседневного использования, так как не позволяет оставить машину на длительной стоянке. Дело в том, что давление в системе постепенно снижается и колодки отпускаются.

Проверка технического состояния тормозных систем.

Для проверки стояночной системы в «гаражных» условиях рычаг затягивают до упора, включают первую передачу и плавно отпускают сцепление. Если система работает, то двигатель заглохнет.

Проверка рабочей тормозной системы в «домашних» условиях малоэффективна. Ее начинают с осмотра. Оценивают уровень тормозной жидкости в бачке, проверяют систему на отсутствие подтеков жидкости. При нажатии педали тормоза во время движения, должны блокироваться все колеса. При этом автомобиль не должно вести в сторону, недопустимы вибрации педали тормоза и ее провалы, срабатывание тормоза не с первого «качка», появление посторонних скрипов и увеличение тормозного пути.

Для более точной диагностики необходимо обращаться в сервисный центр. Полную проверку необходимо проводить не реже, чем через каждые 50000 км.

Рабочая тормозная система

Тормозные рабочие механизмы размещают в колесах автомобиля, поэтому их называют колесными. Различают механический, гидравлический и пневматический привод тормозных механизмов.

В устройстве гидравлического привода используют свойств а жидкостей (закон Паскаля)

Рис. Схема гидравлического тормозного привода А – расположение, Б – соединение, В – действие тормозов. 1 – главный тормозной цилиндр, 2 – трубопроводы, 3 – тормозные цилиндры колес, 4 – тормозная педаль, 5 – присоединение шлангов, 6 – корпус главного тормозного цилиндра, 7 – гибкие шланги, 8 – бачок для тормозной жидкости, 9 – колодка, 10 – тормозной барабан.

Гидравлический привод состоит из главного тормозного цилиндра 1с резервуаром для тормозной жидкости, соединенного трубопроводами 2 с тормозными цилиндрами 3 колес, шланги, гидровакуумного усилителя.

Вся система заполняется специальной тормозной жидкостью, не разъедающей резиновые детали автомобиля.

Жидкость в гидравлической системе тормозов подается от головного цилиндра 1 к цилиндрам 3 колес по металлическим трубкам 2 и специальным шлангам из прорезиненной ткани 7, выдерживающим высокие давления и действие масел. Такая конструкция позволяет управлять тормозами, несмотря на колебания мостов и колес.

Главный тормозной цилиндр .

Главный тормозной цилиндр соединяется с колесными цилиндрами при помощи системы трубопроводов, состоящей из металлических трубок, тройников, штуцеров и гибких шлангов из прорезиненной ткани.

Рис. Главный тормозной цилиндр автомобиля ГАЗ 1 – крышка, 2 – пополнительный бачок, 3 – питающий штуцер, 4 и 17 – корпусы, 5 – защитный колпачок, 6 – толкатель, 7 и 15 – поршни, 8 – упорный болт, 9 – уплотнительное кольцо головки, 10 – манжета, 11, 16 – головки поршня, 12 – упорный стержень, 13 – возвратная пружина, 14 – упор первичного поршня, 18 – упор вторичного поршня, 19 – клапан избыточного давления, А – штуцер выхода жидкости в контур тормозного привода задних колес, Б – штуцер выхода жидкости в контур тормозного привода передних колес, I и II – полости цилиндра.

Главный тормозной цилиндр создает давление в двух независимых гидравлических контурах тормозного привода, поршнем 7 в приводе задних колес, а поршнем 15 в приводе передних колес. Если один из контуров разгерметизируется и перестанет затормаживать связанные с ним колеса, другой будет продолжать работать. При этом у водителя сохранится возможность остановить транспортное средство, правда с меньшей эффективностью.

Поршни размещены в цилиндрах 4 и 17, корпуса которых соединены питающими штуцерами 3 с пополнительным бачком, а выходными штуцерами А и Б – с контурами тормозного привода соответственно задних и передних колес.

Роль перепускного клапана исполняют плавающие головки 11 , установленные на поршнях. В расторможенном положении между головкой и поршнем под действием возвратных пружин устанавливается зазор. Полости I и II цилиндра сообщаются с бачком 2. При нажатии педали тормоза, я поршень тормозного привода задних колес перемещается, а затем при помощи упорного стержня 12 перемещается поршень привода передних колес и нагнетается тормозная жидкость через клапан 19 в рабочие тормозные цилиндры колес. Под действием пружин головки 11 поршней прижимаются к их торцу, рассоединяя полости I и II с бачком и в тормозном приводе создается давление. С помощью клапанов 19 в тормозной системе поддерживается избыточное давление тормозной жидкости 40 – 80 кПа. После прекращения нажатия педали поршень возвращается в исходное положение пружиной 13.

Под капотом автомобиля расположен запасной бачок 2, изготовленный из прозрачного материала, что позволяет контролировать уровень жидкости в нем. Пополнительный бачок служит для питания тормозной системы. Цилиндр и бачок соединены отверстиями, через которые жидкость перетекает из бачка в цилиндр и обратно.

Уровень жидкости должен всегда находится на расстоянии 15 – 20 мм от кромки заливного отверстия.

Бачок имеет три изолированные секции, одна из которых питает систему привода сцепления, а две другие – систему раздельного привода тормозов.

На автомобилях установлен двухконтурный тормозной привод с раздельным торможением передних и задних колес, имеющий в каждом контуре гидровакуумный усилитель и вакуумный баллон с запорным клапаном, которые обеспечивают независимое питание каждого контура. Гидровакуумный усилитель служит для снижения усилия водителя, нажимающего на педаль тормоза, используя вакуум, возникающий во всасывающем трубопроводе двигателя.

Гидровакуумный усилитель состоит из корпуса (силовой камеры), гидравлического цилиндра 9 и клапана управления. В корпусе силовой камеры установлена диафрагма с упорной тарелкой, пружина и толкатель. Толкатель одним концом соединен с тарелкой диафрагмы, а с другой с поршнем цилиндра усилителя, в котором установлен шариковый клапан. Силовая камера разделена подвижной диафрагмой на две части, соединенные между собой хомутиками.

Одна часть связана с атмосферой, а другая с выпускным коллектором двигателя. Гидровакуумный усилитель работает следующим образом, когда педаль тормоза отпущена, воздушный клапан управления закрыт, а вакуумный открыт, и через него обе полости камеры сообщаются между собой.

При нажатии на педаль тормоза 1, водитель принудительно перемещает диафрагму, шариковый клапан поршня 10 усилителя открывается, и жидкость из главного тормозного цилиндра поступает к колесным тормозам, приводя их в действие и создавая дополнительную силу на штоке главного тормозного цилиндра, действующую в том же направлении куда перемещает шток нога водителя. В результате для достижения необходимой эффективности торможения нажимать на педаль тормоза можно с меньшим усилием.

Вакуумный усилитель рабочей тормозной системы действует только при работающем двигателе. Это необходимо учитывать при движении транспортного средства с неработающим двигателем (например, при буксировке неисправного транспортного средства). В последнем случае, чтобы снизить скорость или остановить автомобиль, на педаль тормоза придется нажимать с большим усилием, чем на транспортном средстве с работающим усилителем.

Тормозная система с пневмоприводом . Работа пневматической системы тормозов: в компрессоре создается запас воздуха под давлением, который хранится в воздушных баллонах. При нажатии на педаль тормоза воздействует на тормозной кран, который создает давление в тормозных камерах, которые приводят в действие через рычаг тормозной механизм, который и производит торможение и при отпуске педали прекращается торможение.

Пневмопривод применяют на автомобилях большой грузоподъемности. Он позволяет получать достаточно большие силы в тормозных механизмах при небольших силах, прикладываемых водителем к тормозной педали.

Рис. Схема пневматического привода тормозов автомобиля ЗИЛ. 1 – компрессор, 2 – манометр, 3 – воздушные баллоны, 4 – задние тормозные камеры, 5 – соединительная головка, 6 – разобщительный кран, 7 – соединительный шланг, 8 – тормозной кран, 9 – передние тормозные камеры.

В пневматический привод автомобиля входят компрессор 1, нагнетающий сжатый воздух в баллоны(ресиверы)3, тормозные камеры 4 и 9, тормозной кран 8, связанный с тягой тормозной педалью и соединительная головка 5 с разобщительным краном 6, позволяющая соединять тормозную систему прицепа к системе пневматического привода тормозов автомобиля – тягача.

Вал компрессора приводится во вращение от коленчатого вала двигателя ременной передачей. Создаваемое компрессором давление автоматически ограничивается регулятором давления. Величину давления контролируют манометром.

При нажатии на педаль тормоза, тормозной кран сообщает тормозные камеры всех колес с ресиверами. Тормозная камера приводит в действие тормозной механизм за счет энергии сжатого воздуха. Поступающий в каждую камеру сжатый воздух, который прогибает диафрагму к корпусу вместе с диском и перемещает шток.

Рис. Тормозная камера 1 – крышка корпуса, 2 – штуцер для подвода и отвода воздуха, 3 – диафрагма, 4 – корпус, 5 – шток, 6 – рычаг, 7 – червяк, 8 – фиксатор червяка, 9 – червячная шестерня, 10 – вал разжимного кулака тормозного механизма, 11 – пружины диафрагмы.

Шток повертывает рычаг 6, а вместе с ним и вал 10 разжимного кулака тормозного механизма колеса, прижимающего колодки к тормозному барабану. После отпускания педали тормоза колодки возвращаются в исходное положение, тормозной кран 8 разобщает с ресиверами тормозные камеры и соединяет их с атмосферой. Воздух из камер выходит, пружины 11 возвращают диафрагму в первоначальное положение и торможение прекращается. Вмонтированные в рычаг 6 червяк 7 и червячная шестерня 9 позволяют поворачивать вал 10 относительно рычага и этим регулировать зазор между колодками и барабаном тормозного механизма. Компрессор является источником сжатого воздуха, питающим все агрегаты пневматической системы. На грузовых автомобилях и автобусах применяют одноступенчатые двухцилиндровые компрессоры одностороннего действия . Компрессор нагнетает воздух в воздушные баллоны.

Рис. Схема компрессора. 1 – поршень, 2 – нагнетательный клапан, 3 – трубопровод подачи воздуха в воздушный баллон, 4 – впускной клапан, 5 – воздухопровод от воздушного фильтра, 6 – регулировочный колпак, 7 – шток, 8 – блок шариковых клапанов, 9 – трубопровод от воздушного баллона, 10 – разгрузочный канал, 11 – плунжер разгрузочного устройства, А – блок цилиндров, Б – регулятор давления, В – отверстие.

При ходе поршня вниз, в цилиндре компрессора создается вакуум, открывается впускной клапан и через воздушный фильтр двигателя поступает воздух. При ходе поршня вверх, впускной клапан закрывается, сжатый воздух через открытый нагнетательный клапан 2, поступает через трубопроводы в головку и воздушные баллоны.

Регулятор давления Б поддерживает заданное давление воздуха в пневмосистеме автоматически. Конструкция регулятора включает в себя корпус и блок из восьми шариковых клапанов. При давлении в системе ниже 0,6 МПа шариковые клапаны опущены и нижний шарик закрывает отверстие, сообщающееся с воздушными баллонами. Через наклонные каналы штуцера и отверстие В в разгрузочное устройство попадает воздух из атмосферы.

Шариковые клапана поднимаются, когда давление в системе достигнет 0,75МПа, верхний шарик закроет наклонные канал штуцера, перекрыв доступ воздуха из атмосферы, в разгрузочное устройство начинает поступать воздух из баллонов. Сжатый воздух выключает впускные клапаны компрессора из работы. Верхний клапан открывается при давлении в системе 0,75МПа, а нижний при давлении менее 0, 6 МПа.

Регулировочным колпаком 6 можно регулировать затяжку пружины и устанавливать давление, при котором компрессор будет выключаться.

Воздушные баллоны необходимы для хранения сжатого воздуха. На баллонах имеются кран для слива конденсата, и на правом баллоне кран отбора воздуха. Объема воздушных баллонов хватает до 10 торможений.

Чтобы исключить повышения давления в системе пневматических тормозов, при неисправном регуляторе давления, на воздушном баллоне установлен предохранительный клапан, который открывается если давление в системе превысит 0,95 МПа.

Рис. Масловлагоотделитель.

Масловлагоотделитель – устанавливается перед баллонами и предназначен для очистки сжатого воздуха, поступающего из компрессора от масла и влаги. Масло оказывает вредное действие на резиновые детали пневматической системы, а пары воды, конденсируясь в узлах системы при отрицательных температурах замерзают, что приводит к нарушению работы основных элементов пневматической системы автомобиля.

В корпусе 1 установлен обратный клапан 2, прижимаемый к гнезду пружиной 3. Сверху корпус закрыт пробкой 4. Для уплотнения корпуса и стакана 7 установлено резиновое кольцо 8 (уплотнение происходит при затяжке конусного наконечника стяжного стержня 6). Воздух из компрессора поступает в отверстие А, проходит через латунную сетку элемента 5, отделяясь от масла и влаги, поступает в отверстие стержня, и, отжимая обратный клапан, выходит в трубопровод, связанный с баллоном.

Оставшееся на сетке масло и влага стекают в стакан 7. Для выпуска конденсата в нижней части стакана устанавливают сливной краник.

Рис. Сливной кран

Сливные краны предназначены для периодического слива конденсата из всех баллонов и масловлагоотделителя. Выпуск конденсата осуществляется наклоном клапана 3 с помощью кольца 5. Пружина 2 прижимает клапан к седлу 4 в нормальном состоянии. С помощью штуцера 1 кран вворачивается в баллон.

Для повышения надежности работы пневматической системы и исключения замерзания конденсата применяют антифризный насос, который устанавливают между масловлагоотделителем и регулятором давления. Он служит для подачи в пневматическую систему порции морозостойкой жидкости, которая находится в специальном бачке.

Антифризный насос должен работать только в холодное время года. В теплое время его снимают. Он заполняется смесью этилового (300 см3) и изоамилового (2 см3) спиртов.

Разгрузочное устройство . Работает от регулятора давления и расположено в блоке цилиндров компрессора. Когда давление сжатого воздуха в системе достигает 0,75 МПа срабатывает регулятор давления Б. Поступление воздуха в систему тормозов прекращается, так как открываются впускные клапаны 4 обоих цилиндров под действием воздуха попадающего из баллона через трубопровод в разгрузочный канал и поднимают плунжеры, которые в свою очередь открывают клапаны.

При снижении давления происходит обратный процесс. Плунжеры опускаются и на клапаны перестает действовать разгрузочное устройство.

Сжатый воздух поступает в баллоны, до тех пор, пока давление в них не достигнет 0,75 МПа.

Блок цилиндров и головку блока во время работы охлаждают жидкостью, поступающей из системы охлаждения в водяную рубашку блока цилиндров компрессора. По маслопроводу поступает масло, которое смазывает трущиеся детали компрессора.

Тормозной кран . Тормозной кран предназначен для управления колесными тормозами автомобиля и прицепа. Тормозной кран служит для управления тормозами автомобиля в результате регулировки подачи сжатого воздуха из баллонов к тормозным камерам.

Рис. Тормозной кран автомобиля ЗИЛ

1 – корпус рычагов, 2 – двойной рычаг, 3 – болт, 4 – кулачок, 5 – тяга, 6 – нлаправляющая, 7 – шток секции торможения прицепа, 8 – диафрагма, 9 и 12 – седла клапанов, 10 – впускной клапан, 11 – выпускной клапан, 13 – включатель стоп-сигнала, 14 – диафрагма стоп-сигнала, 15 – шток секции торможения автомобиля, 16 – корпус тормозного крана.

Тормозной кран обеспечивает постоянное тормозное усилие при неизменном положении тормозной педали и быстром растормаживание при прекращении нажатия на педаль.

Корпус тормозного крана разделен на две секции – нижняя управляет тормозами автомобиля, а верхняя – тормозами прицепа. В каждой секции между крышкой и корпусом закреплена диафрагма из прорезиненной ткани с гнездом выпуклого клапана. Крышки секций снабжены двойными клапанами, расположенными на одном стрежне и имеющих общую пружину. В корпусе тормозного крана расположены два штока с пружинами 7 и 15.

К корпусу тормозного крана прикреплен корпус рычагов, в котором, в свою очередь, находятся двойной рычаг 2 и тяга 5. Двойной рычаг состоит из двух половин, соединенных между собой подвижной осью.

Если нажать на педаль тормоза, то тяга5 смешается влево, увлекая за собой верхний рычаг 2, перемещает шток 7 верхней секции влево. Когда верхний шток 7 упрется в ограничительный болт 3, нижний конец верхней половины рычага отводит нижнюю половину рычага вправо вместе со штоком нижней секции. Тормоза прицепа включаются несколько раньше, чем тормоза автомобиля, что исключает столкновение прицепа с автомобилем.

Рис. Схемы действия тормозов: а – при растормаживании, б – при торможении. 1 – компрессор, 2 – тормозной кран, 3 и 13 – выпускные клапаны, 4 и 5 – впускные клапаны, 6 – разобщающий кран, 7 – воздухораспределитель, 8 – воздушный баллон прицепа, 9 – тормозная камера колеса прицепа, 10 – воздушный баллон автомобиля, 11 – тормозная камера колеса автомобиля, 12 – пружина впускного клапана, 14 – тяга.

верхней секции открыт в расторможенном состоянии, и сжатый воздух из баллонов проходит в воздухораспределитель и заряжает баллон прицепа.

Выпускной клапан 3 открыт и сообщает тормозные камеры автомобиля с атмосферой, при закрытом впускном клапане 4.

При нажатии на педаль тормоза, тяга 14 перемещается влево вместе со штоком и верхним концом рычага 2, отводя за собой седло клапана 13. Под действием пружины 12 впускной клапан верхней секции закрывается, а выпускной открывается. Сжатый воздух из баллона прицепа поступает в тормозные камеры 9, а воздух из воздухораспределителя выходит в атмосферу. Колеса прицепа будут заторможены.

Торможение на стоянке осуществляется механизмом ручного привода тормозов прицепа, соединенного с центральным тормозом автомобиля.

Манометр позволяет проверять давление воздуха как в воздушных баллонах, так и в тормозных камерах системы пневматического привода. Для этого он имеет две стрелки и две шкалы. По нижней шкале проверяет давление в тормозных камерах, по верхней – в воздушных баллонах.

Воздушный фильтр предназначен для очистки воздуха, поступающего от компрессора в пневматическую систему от влаги и от масла. Он установлен на поперечной балке крепления воздушных баллонов. Из книги Занимательная анатомия роботов автора Мацкевич Вадим Викторович

Двоичная система счисления – идеальная система для ЭВМ Мы уже говорили о том. что в нервных сетях действуют законы двоичного счисления: О или 1, ДА или НЕТ. Какими особенностями отличается двоичная система? Почему именно её избрали для ЭВМ?Мы принимаем как должное счёт до

Из книги Процессы жизненного цикла программных средств автора Автор неизвестен

5.4.3 Эксплуатация система Данная работа состоит из следующей задачи:5.4.3.1 Система должна эксплуатироваться в установленной для нее эксплуатационной среде в соответствии с документацией

Из книги ОБЩИЕ ТРЕБОВАНИЯ К КОМПЕТЕНТНОСТИ ИСПЫТАТЕЛЬНЫХ И КАЛИБРОВОЧНЫХ ЛАБОРАТОРИЙ автора Автор неизвестен

4.2 Система качества 4.2.1 Лаборатория должна установить, внедрить и поддерживать систему качества в соответствии с областью ее деятельности. Лаборатория должна документально оформить свою политику, системы, программы, процедуры и инструкции в объеме, необходимом для

Из книги Компьютерная лингвистика для всех: Мифы. Алгоритмы. Язык автора Анисимов Анатолий Васильевич

МИФ КАК СИСТЕМА Человек всегда стремился познать истоки своего бытия, пытался понять свой путь, найти начало начал. Почему «в начале было слово», почему по всему миру повторяются сходные предания, почему в этом повторяющемся мире возникают все новые и новые литературные

Из книги Управление качеством автора Шевчук Денис Александрович

3.4.2. Система «ДЖИТ» Это новая форма организации «just in time», буквально означающая «производство точно в срок». Ее фундаментальный смысл: ноль запасов, ноль отказов, ноль дефектов. Подробнее ДЖИТ представляет собой технологию, которая подразумевает снижение запаса

Из книги О станках и калибрах автора Перля Зигмунд Наумович

Метрическая система Французская комиссия мер и весов во времена Французской революции так отзывалась о новой системе: «Определение этих мер и весов, взятое из природы и тем самым освобожденное от всякого произвола, будет ныне устойчивым, непоколебимым и

Из книги Создаем робота-андроида своими руками автора Ловин Джон

Система радиоуправления Система радиоуправления специально создана для подобных дирижаблей (см. рис. 14.5). Она имеет исключительно малый вес. Блок движителя представляет собой сдвоенный турбовентилятор, закрепленный к нижней части дирижабля. Каждый вентилятор может

Из книги Феномен науки [Кибернетический подход к эволюции] автора Турчин Валентин Фёдорович

9.4. Позиционная система Основы позиционной системы заложили вавилоняне. В системе счисления, которую они заимствовали от своих предшественников - шумерийцев, мы с самого начала (т. е. в древнейших дошедших до нас глиняных табличках, относящихся к началу третьего

Из книги Сертификация сложных технических систем автора Смирнов Владимир

4.4. Система «Оборонсертифика» По инициативе Министерства оборонной промышленности РФ создана и зарегистрирована в Госстандарте России система добровольной сертификации продукции и систем качества предприятий оборонных отраслей промышленности –

Из книги Такова торпедная жизнь автора Гаврилов Дмитрий Анатольевич

Система смазки Система смазки достаточно проста. Основные части этой системы: поддон картера (резервуар для масла), масляный насос с маслоприемником и сетчатым фильтром, масляные фильтры грубой и тонкой очистки, редукционный, перепускной и предохранительный клапаны,

Из книги Руководство слесаря по замкам автора Филипс Билл

Стояночная тормозная система Тормозные колодки автомобиля ГАЗ имеют фрикционные накладки для увеличения коэффициента трения. Разжимным приспособлением служит гидравлический рабочий тормозной цилиндр 5 колеса.Принцип действия тормозной системы заключается в

Из книги автора

Система противоречий Довольно редко бывает так, что некий объект возникает как результат разрешения одного-единственного противоречия, обычно накапливается целый комплект противоречий и ограничений.Скажем, создание водородной энергетики обусловлено следующими

Одним из самых совершенных изобретений человечества можно назвать автомобили. Их особенности эксплуатации обуславливают то, что все системы должны работать максимально эффективно, все возможные случаи во время эксплуатации предусматриваются на момент конструирования каждой модели. Все это связано с тем, что во время движения на высокой скорости возникает опасность для тех, кто находится внутри транспортного средства, и для тех, кто снаружи. К системам, которые предназначены увеличить безопасность движения, можно назвать тормозной механизм. Ему уделяется большое внимание.

Предназначение тормозной системы

Тормозная система применяется для регулирования скорости движения или для фиксации автомобиля во время покоя. Особые навыки управления позволяют использовать тормоза для резких, сложных маневров, которые не связаны со снижением скорости движения.

Если двигатель и другие системы позволяют набирать скорость, то тормоза проводят ее сброс. Естественно, чем они надежнее и совершеннее, тем лучше происходит торможение.

История создания

Для того чтобы понять принцип работы системы, которая способна снизить скорость за несколько секунд, следует обратить внимание на историю ее создания. Столь совершенная система была получена не сразу, а путем проб и ошибок, которые определили как название систем, так и их эксплуатационные качества.

История создания первых механизмов, которые позволяли снизить скорость, начинается с гужевого транспорта. При больших скоростях лошадь не могла сама остановить повозку быстро, поэтому стали использовать системы рычагов, когда к ободу прижималась колодка. До 1920 года подобная система применялась и на первых автомобилях.

Тогда за одну поездку приходилось несколько раз менять кожаную накладку, так как она быстро истиралась. Подобная, но усовершенствованная система по сей день используется на скоростных велосипедах.

В начале 20 века автомобили стали разгоняться до скорости выше 100 км/час. Именно тогда стало ясно, что именно тормозная система не позволяет совершенствовать автомобиль. Интересным фактом можно назвать, что именно дисковые тормоза появились первыми. Однако используемые материалы при изготовлении определяли сильный скрежет на момент движения. Поэтому большой популярностью стали пользоваться барабанные системы. На тот момент их хватало всего на 2 тысячи пройденного пути.

До 1953 года проводилось совершенствование барабанных тормозных систем. И только после этого года была разработана иная система, которая основывалась на применении дисков. После этого конструкция усовершенствуется и при создании современных автомобилей.

Классификация тормозных систем

Существует довольно много вариантов исполнения тормозных систем. Не все они используются при конструировании автомобилей. По предназначению можно выделить следующую классификацию:

  • Механизм рабочего предназначения необходим для регулирования скорости машины во время движения. Этот вариант исполнения самый востребованный, так как применяется на протяжении всего движения. В последнее время конструкция подобной системы значительно усложняется путем включения в систему различных устройств по контролю усилия, проскальзывания колес и так далее.
  • Тормоз стояночного типа применяется на момент стоянки или кратковременной остановки. Согласно установленным правилам именно стояночный тормоз стоит использовать на момент остановки под горку, на светофоре и в других подобных случаях. Зачастую задействовать системы можно при помочи специального рычага, современные автомобили имеют электрический включатель. На легковых автомобилях от рычага проложен трос, которые сразу идет к задним колесам. Грузовые имеют воздушную систему с установленными энергоаккумуляторами.

Также можно отметить вспомогательную тормозную систему, которую зачастую включают в конструкцию грузовых автомобилей, автобусов. Ее работа основана перекрытии выпускного трубопровода, который подает топливо в двигатель. Используют систему при длительном спуске, так как рабочая может перегреться и потерять свою эффективность. Также проведем рассмотрение того, какие тормоза еще бывают по типу привода.

Важным показателем также можно назвать то, какой тип системы приводит в движение исполнительный механизм, который непосредственно выполняет торможение. По данному показателю можно выделить:

  • Механический привод. Использовался на старых автомобилях. Имеет высокую надежность, но при этом малую эффективность работы. Механические привод основывался на использовании системы тяг для приведения исполнительного органа в движение, при нажатии на педаль.
  • Гидравлический получил широкое применение при создании современных легковых автомобилей. Его работа основана на не сжимаемости используемой рабочей жидкости. Система представлена несколькими исполнительными органами, а давление передается при помощи жидкости.
  • Пневматическая система работает на основе сжатого воздуха. Как и жидкость, газообразные вещества имеют предел сжимаемости. Именно поэтому газообразные вещества, зачастую именно воздух, используются для передачи усилия.
  • Существует также комбинированный вариант исполнения, когда в системе используется как воздух, так и жидкость. Зачастую подобную систему можно встретить на грузовых автомобилях и автобусах.
  • Электронный вариант исполнения используется крайне редко, так как надежность подобной системы находится на относительно низком уровне. Ак правило, чем проще система, тем она надежнее. Именно поэтому довольно редко проводится установка электрической тормозной системы, когда команда на исполнительный орган передается при помощи электричества.

Тип привода в большей степени определяет особенности работы тормозной системы.

Кроме вышеприведенных особенностей также следует отметить тип исполнительного органа. По данному показателю можно выделить нижеприведенные системы:

  • Сочетание барабана и прижимного механизма с колодками – ранее наиболее распространенный исполнительный механизм, который зачастую устанавливается автобусы и автомобили категории «С». Ее особенность можно назвать то, что сила трения возникает внутри барабана.
  • Тормозная система на основе диска и прижимного суппорта используется при создании всех современных автомобилей. Особенностью данной системы можно назвать сочетание диска, которые вращается вместе с колесом, и суппорта, который проводит сжимание колодок для торможения.

Наиболее эффективной системой считается сочетание диска и суппорта. Применение новых материалов при изготовлении накладок, которые создают силу трения, позволяет значительно увеличить надежность рассматриваемой системы.

Преимущества дисковых тормозов

При рассмотрении практически всех современных легковых автомобилей следует отметить, что они имеют дисковую систему. Это связано с нижеприведенными нюансами:

  • Конструкция намного проще, а значит дешевле и надежнее.
  • Проводится автоматическое регулирование зазора при стирании накладок.
  • Конструкция компактнее и легче, что позволяет создавать быстрые спортивные автомобили.
  • Несмотря на уменьшение площади колодок эффективность подобной системы значительно выше. Это связано с тем, что диск и колодки имеют ровную поверхность, а это обеспечивает равномерное прижимание.
  • Проще провести обслуживание. Проводить ограничение прижимной силы не нужно.
  • Лучшее охлаждение, так как воздух свободно циркулирует. Стоит отметить, что перегрев зачастую приводит к значительному ухудшению работы тормозов. Поэтому для повышения эффективность охлаждения используют специальные колесные диски.
  • Продукты загрязнения легко удаляются. В барабане зачастую накапливается большое количество грязи, что обуславливает снижение эффективности работы системы.

Однако при создании подобной конструкции также были выявлены некоторые трудности. Примером можно назвать необходимость воздействия большого усилия, что возможно стало при использовании только гидравлического привода. Также устанавливается механизм, который позволяет уменьшить необходимое усилие при нажатии на педаль.

Часть первая про то, какими бывают тормозные суппорта, чем они отличаются и как работают, поговорим про рабочий тормозной цилиндр и колодки, устроим небольшую автоугадайку и посмотрим много фотографий. Начнем с тормозного диска.

Тормозной диск


Тормозной диск с плавающим ротором Ferrari 430

Тормозной диск, выполненный из чугуна, жестко закреплен на ступице колеса, то есть вращается со скоростью колеса. Тормозные диски это то, что предстает перед нами, при снятом колесе.

Передний тормозной диск Ford Focus ST

Тормозной диск берет на себя почти всю тепловую энергию, выделяющуюся во время торможения. Поэтому его главной характеристикой является теплоемкость и теплопроводность. Последняя в свою очередь также нужна для того, чтобы быстро отдавать тепло окружающей среде - нагревать воздух. Диск должен обладать достаточной жесткостью, чтобы выдерживать давление колодок и должен переносить частые и сильные перепады температур. В гражданских автомобилях применяют диски из чугуна, который имеет очень низкий коэффициент трения, что повышает износостойкость. Казалось бы, что в тормозах коэффициент трения должен быть большим, но что все в конечном итоге упирается в коэффициент трения покрышек с асфальтом. И только там, где покрышки позволяют, имеет смысл использовать диски из керамики, карбона. Но такие диски будут заметно быстрее изнашиваться.
По конструкции различают цельные диски и вентилируемые (двойные). Цельные представляют из себя плоский цельный диск - такие обычно ставят на задние колеса бюджетных машин.

Цельный задний тормозной диск

Вентиллируемые диски это, по-сути, два цельных диска соединенные перегородками. Вентиллируемые диски гораздо лучше охлаждаются за счет воздуха, который циркулирует между дисками. На дорогих дисках перегородки спроектированы специально так, чтобы улучшить циркуляцию воздуха.

Вентиллируемый передний тормозной диск BMW

Для облегчения веса ступичную часть диска (колокол) изготавливают из более легких сплавов (алюминий), а сам ротор (рабочая поверхность) крепится болтами. Причем крепление может быть не жестким и допускать некоторое осевое смещение рабочей части диска - диски с плавающим ротором.

Составной тормозной диск Mitsubishi Evolution X

Диски с насечками помогают отводить горячие газы от трущихся поверхностей колодки и диска, и с одной стороны увеличивают площадь поверхности диска (для лучшего охлаждения), а с другой уменьшают площадь соприкосновения колодки с диском, соответственно меньше тепла выделяется в паре трения.

Вентиллируемый диск с насечками. В разрезе видно структуру перемычек, соединяющих две части диска

Перфорируемые диски имеют сквозные и глухие отверстия и способствуют лучшему охлаждению диска. Также с одной стороны они уменьшают жесткость всей конструкции, а с другой помогают диску легче переносить деформации связанные с постоянными и быстрыми нагреваниями и охлаждениями.

Тормозной диск с перфорацией Aston Martin в виде настенных часов

Сравнение разных видов дисков

Тормозной диск, а вернее его размер напрямую влияет на минимальный размер колесных дисков и косвенно на профиль резины. Чем больше требуется тормозной диск, тем больше будет колесо, ведь сам диск и суппорт должны поместиться в колесный диск и еще иметь зазор для доступа воздуха для охлаждения и не перегревать сами колеса.

Суппорт


Тормозной суппорт Brembo «Extrema» для Ferrari LaFerrari

Задача суппорта - прижимать колодки к тормозному диску с обеих сторон. На передних колесах суппорт крепится к поворотному кулаку и неподвижен относительно вращающегося тормозного диска. Колодки к диску прижимает рабочий цилиндр (от одного до шести-восьми), приводимый в действие высоким давлением тормозной жидкости. Рабочие цилиндры могут находиться как с одной стороны цилиндра, так и с обеих.

Однопоршневой плавающий суппорт BMW

В обычных машинах в суппорте находится один рабочий цилиндр, размещенный с внутренней стороны. Для гоночных машин хорошо подходят суппорта с несколькими рабочими цилиндрами (многопоршневые), но в гонках редко когда торможение происходит до полной остановки, обычно там необходимо быстро и эффективно сбросить скорость (ну, скажем, до 90 км/ч и пройти крутой поворот). Несколько рабочих цилиндров равномернее прижимают колодку к диску, и тепло распределяется равномернее. Но у таких конструкций меньше прижимной силы, из-за малого размера самих поршней и цилиндров. Один большой рабочий цилиндр развивает большее усилие, чем, например, два-три маленьких.

Однопоршневой плавающий суппорт с тормозными колодками

Распространены две конструкции - с плавающим и фиксированным суппортом. В гражданских автомобилях применяется первая. Состоит из двух частей - самого суппорта и направляющей колодок.

Колодки в направляющей (без суппорта)

Плавающий суппорт закреплен только по оси вращения тормозного диска (колеса) и может свободно перемещаться перпендикулярно ей по направляющим (пальцам), закрепленным в направляющей колодок. Это позволяет разместить один или несколько тормозных цилиндров только с одной стороны суппорта, но при этом иметь равномерное прижатие колодок к диску с двух сторон. Поршень рабочего цилиндра давит на колодку, прижимая ее к тормозному диску, при этом толкая суппорт от поршня, что приводит к прижиму колодки с противоположной стороны диска.
Двухпоршневой плавающий суппорт в сборе с направляющими и колодками

Фиксированные суппорта жестко закреплены относительно диска и имеют от двух до восьми рабочих цилиндров, расположенных с разных сторон относительно диска. Сами суппорта разрезные, либо отлиты одной частью.

Четырехпоршневой фиксированный монолитный суппорт в разрезе

Суппорт крепится к поворотному кулаку либо непосредстенно, либо через специальные скобы.

Крепление суппорта Honda Civic (фиксированный составной четырехпоршневой)

Суппорт имеет два отверстия - для подачи тормозной жидкости и для прокачки (обычно располагают сверху, чтобы воздух легче выходил).

Плавающий однопоршневой задний суппорт KIA Sorento. Стрелками отмечены входной порт и штуцер для прокачки (под резиновым колпачком)

Фиксированные суппорта могут быть составными (суппорт имеет продольный разрез и состоит из двух зеркальных половинок) и монолитными. Первые проще в изготовлении. В целом они имеют примерно одинаковую прочность, причем составным добавляют жесткость стальные болты, соединяющие две части алюминиевого суппорта. (Причем модуль упругости стали увеличивается с ростом температуры, в то время как для алюминия он падает, но для дорогих монолитных суппортов применяют особые сплавы аллюминия, которые не так сильно этому подвержены).

Монолитный фиксированный суппорт

Две половины фиксированных суппортов соедининены трубкой для подачи тормозной жидкости ко второй половине. Обычно она располагается снаружи, но может проходит каналом и внутри суппорта.

Составной шестипоршневой фиксированный суппорт. Снизу трубка для соединения двух половин

На разных машина расположение тормозных суппортов относительно диска носит, казалось бы, совершенно случайный характер. Каких только конфигураций нет (наиболее часто встречающаяся - передний суппорт смещен назад, задний - вперед, т. е. суппорта «смотрят» друг на друга). В целом, тормозной суппорт следует держать подальше от пыли, грязи и воды летящей с дороги, но это приводит к повышению центра тяжести (особенно на гоночных машинах с огромными и тяжелыми суппортами). Расположение переднего суппорта продиктовано расположением рулевой тяги и геометрией подвески. Расположением суппортов можно немного повлиять на продольную развесовку машины и длину тормозной магистрали, которая влияет на скорость срабатывания тормозов. Также следует принимать во внимание удобство обслуживания. Там где это важно, следует учитывать направления потоков воздуха для охлаждения тормозов - охлаждать ли сначала суппорт или диск.

Рабочий тормозной цилиндр


Разрез рабочего цилиндра с поршнем Chevrolet Corvette ZR1

Рабочий цилиндр представляет из себя поршень, который ходит в просверленном отверстии в суппорте. Поршень давит непосредственно на тормозную колодку под действием давления тормозной жидкости. Для уплотнения используется резиновое кольцо, вставленное в углубление в стенке поршня (суппорта). Сам поршень полый, обычно в виде стакана, часто покрыт хромом для защиты от коррозии. Для защиты от попадания в рабочий цилиндр пыли и грязи используется пыльник, фиксирующийся одной стороной на поршне, а другой на суппорте. Пыльник выполнен из жаропрочной резины.

Поршень рабочего цилиндра

В многопоршневых суппортах (6 и выше) принято использовать рабочие цилиндры разного диаметра, который увеличивается к задней части колодки/суппорта. То есть задняя часть колодки прижимается сильнее. Это позволяет добиться более равномерного износа колодки, помогая эффективнее распределять тепло. Кроме того при торможении колодка стачивается, образуя пыль, которая накапливается к задней части колодки.

Поршень рабочего цилиндра. Такая конструкция поршня позволяет меньше тепла передавать тормозной жидкости

Тормозные колодки


Колодка это металлическая пластина с нанесенным на нее фрикционным слоем, который должен быть устойчив к высоким температурам. Коэффициент трения фрикционного слоя у обычных (гражданских колодок) не превышает 0.4. Нужно учитывать что высокий коэффициент трения в паре колодка-диск приводит к визгу при торможении, из-за возникающих вибраций. Для термоизоляции тормозной колодки от поршня рабочего цилиндра и самое главное от тормозной жидкости изпользуют резиновые или медные составы, нанесенные между колодкой и поршнем. Это кроме того помогает снизить уровень вибраций и визга.

Из-за большой твердости (и хрупкости) фрикционного слоя на колодках применяют насечки. Обычно это вертикальный (один или несколько в зависимости от площади колодки) разрез по центру, который предотвращает растрескивание колодки (из-за постоянного термического расширения и сужения), а также помогает очищать трущиеся поверхности от ржавчины с тормозного диска, пыли, грязи и способствует отводу горячих газов.

Для своевременного оповещения об износе колодок на них устанавливают механический индикатор износа. Он представляет из себя тонкую металлическую пластинку, которая при износе колодки начинает касаться диска и издавать вигз при торможении.

На верхних колодках хорошо виден индикатор износа

В заключении рассмотрим пару фотографий и попробуем определить что там к чему.

Передние тормоза Ford Focus 2012

Это фотография тормозов одного из кадабровцев. Он любит играть в шашечки на МКАДе и у него очень крутые тормоза. Попробуйте отгадать авто и владельца.

Во второй части мы поговорим про тормозную магистраль, тормозную жидкость, поймем принцип работы главного тормозного цилиндра, регулятора и вакуумного усилителя тормозов. В третьей части рассмотрим конструкцию тормозных барабанов, стояночного тормоза, отличия задних суппортов и попробуем «вскрыть» блок ABS.

Для эффективного управления движением любого механического средства – регулированием скорости на том или ином участке пути, замедлением её при выполнении маневров, наконец, для остановки в нужном месте – и в том числе экстренной – на всех грузовых и легковых автомобилях должна быть установлена соответствующая классу машины тормозная система. Для удержания машины на месте во время продолжительной стоянки, особенно на склоне, предусмотрен стояночный тормоз.

Для безопасной эксплуатации транспортного средства эта система должна быть надежна, как никакая другая. Не случайно в перечне неисправностей, при которых запрещено использование транспортного средства (приложение к Правилам дорожного движения РФ), неисправности тормозных систем вынесены на первое место.

Классификация тормозных систем автомобиля

На современных автомобилях устанавливаются три-четыре вида тормозных систем:

  • рабочая;
  • стояночная;
  • вспомогательная;
  • запасная.

Основная и самая эффективная тормозная система автомобиля – рабочая. Она используется во всё время движения для регулирования скорости и полной остановки. Ее устройство довольно простое. Приводится она в действие нажатием на педаль тормоза правой ногой водителя. Такой порядок обеспечивает одновременный сброс оборотов двигателя, за счет снятия ноги с педали акселератора, и торможение.


Стояночная тормозная система , как следует из названия, предназначена для обеспечения неподвижности транспортного средства во время длительной стоянки. На практике опытные водители оставляют машину с включенной первой или задней передачей. Однако на больших склонах этого может оказаться недостаточно.

Ручной стояночный тормоз используют также при трогании с места на неровных участках дороги, когда правая нога должна быть на педали газа, а левая выжимает сцепление . Плавно отпуская рукой рычаг тормоза, включая одновременно сцепление и прибавляя газ, удается предотвратить произвольное скатывание автомобиля под уклон.

Запасная тормозная система призвана дублировать основную рабочую в случае её отказа. Это может быть полностью автономное устройство, или представлять собой часть, один из контуров тормозного привода. Как вариант, функции запасной может выполнять стояночная система.

Вспомогательная тормозная система устанавливается на большегрузных автомобилях, например, на отечественных КамАЗах, МАЗах, КрАЗах. Она предназначена для снижения нагрузки на основную рабочую систему во время длительного торможения – при движении в горах или по холмистой местности.

Устройство системы и принцип действия

Основное в тормозной системе любого автомобиля – это тормозные механизмы и их приводы. Гидравлический тормозной привод, применяемый на легковых автомобилях, состоит из:

  1. педали в салоне;
  2. рабочих тормозных цилиндров передних и задних колес;
  3. трубопровода (тормозных трубок);
  4. главного тормозного цилиндра с бачком.

Принцип работы таков — водитель нажимает на педаль тормоза, приводя в движение поршень главного тормозного цилиндра. Поршень выдавливает жидкость в трубопроводы к тормозным механизмам, которые тем или иным образом создают сопротивление вращению колес, и таким образом происходит торможение.

Отпущенная педаль тормоза посредством возвратной пружины возвращает поршень назад, и жидкость перетекает обратно в главный цилиндр – колеса растормаживаются.

На отечественных заднеприводных автомобилях схема тормозной системы предусматривает раздельную подачу жидкости из главного цилиндра на передние и задние колеса.

На иномарках и переднеприводных ВАЗах применяется схема контура трубопровода «левое переднее – правое заднее» и «правое переднее – левое заднее».

Типы тормозных механизмов, применяемые в автомобилях

На подавляющем большинстве авто установлены тормозные механизмы фрикционного типа, работающие по принципу сил трения. Устанавливаются они непосредственно в колесе и конструктивно подразделяются на:

  • барабанные;
  • дисковые.

Существовала традиция устанавливать барабанные механизмы на задние колеса, а дисковые на передние. Сегодня в зависимости от модели могут ставиться одинаковые типы на все четыре колеса – или барабанные, или дисковые.

Устройство и работа барабанного тормозного механизма

Устройство системы барабанного типа (барабанный механизм) состоит из двух колодок, тормозного цилиндра и стяжной пружины, размещенных на щите внутри тормозного барабана. На колодки наклепаны или приклеены фрикционные накладки.

Тормозные колодки своими нижними концами шарнирно закреплены на опорах, а верхними – под воздействием стяжной пружины – упираются в поршни колесного цилиндра. В незаторможенном положении между колодками и барабаном имеется зазор, обеспечивающий свободное вращение колеса.


Когда через тормозную трубку в цилиндр поступает жидкость, поршни, расходясь, раздвигают колодки. Они приходят в плотное соприкосновение с вращающимся на ступице тормозным барабаном, и сила трения вызывает торможение колеса.

Необходимо отметить, что в приведенной конструкции износ передних и задних колодок происходит неравномерно. Дело в том, что фрикционные накладки передней по ходу движения колодки в момент торможения при движении вперёд прижимаются к барабану всегда с большей силой, чем задние. Как выход, рекомендуется менять колодки местами через определенный срок.

Тормозной механизм дискового типа

Устройство дисковых тормозов состоит из:

  1. суппорта, закрепленного на подвеске, в теле которого размещены наружный и внутренний тормозные цилиндры (может быть один) и две тормозные колодки;
  2. диска, который закреплен на ступице колеса.


При торможении поршни рабочих цилиндров с помощью гидравлики прижимают тормозные колодки к вращающемуся диску, останавливая последний.

Сравнительные характеристики

Барабанные тормоза проще и дешевле в производстве. Они обладают свойством, называемым – эффект механического самоусиления. То есть, при продолжительном давлении ногой на педаль многократно увеличивается тормозящее действие. Это происходит за счет того, что колодки нижними частями связаны друг с другом, и трение передней о барабан усиливает давление на него задней колодки.

Однако механизм дисковых тормозов меньше и легче. Температурная стойкость выше, они быстрее и лучше охлаждаются за счет предусмотренных отверстий-окон. И замена изношенных дисковых колодок производится намного проще, чем барабанных, что важно, если производить ремонт самостоятельно.

Принцип работы стояночного тормоза

Он является чисто механическим устройством. Приводится в действие поднятием рычага «ручника» в вертикальное положение до момента щелчка фиксатора. При этом происходит натяжение двух металлических тросов, проходящих под днищем автомобиля, которые плотно прижимают тормозные колодки задних колес к барабанам.

Для снятия машины со стояночного тормоза надо пальцем утопить фиксирующую кнопку и опустить рычаг книзу, в первоначальное положение.

Не забывайте перед началом движения проверить положение ручника! Езда с не отпущенным ручным тормозом быстро выведет из строя тормозные колодки.

Уход за тормозной системой автомобиля

Как один из наиболее важных узлов, тормозная система автомобиля требует постоянного внимания и ухода. Здесь буквально любая неисправность может привести к непредсказуемым последствиям на дороге.

Некоторые диагнозы можно поставить, исходя из характера поведения тормозной педали. Так увеличенный ход или «мягкая» педаль свидетельствуют, скорее всего, о попадании воздуха в систему гидропривода в результате утечки тормозной жидкости. Поэтому необходимо периодически контролировать уровень жидкости в бачке.

Её повышенный расход может быть следствием повреждения гидрошлангов и трубок, а также обыкновенного испарения со временем. Это приводит к попаданию в систему воздуха и отказу тормозов .

Пришедшие в негодность детали необходимо заменить, а систему придется прокачивать , выпуская воздух из каждого рабочего цилиндра на колесах и доливая жидкость. Процесс длительный и нудный.

Уход автомобиля при торможении в сторону говорит о возможном выходе из строя одного из рабочих цилиндров или чрезмерном износе накладок на каком-то определенном колесе. При загрязнении тормозных механизмов может возникать характерный шум при нажатии на педаль.

Все эти неисправности легко устраняются самостоятельно или обращением в сервисный центр. А чтобы свести к минимуму вышеописанные неприятности, берегите тормоза, чаще используйте торможение двигателем, особенно на крутых и затяжных спусках. Продолжительное по времени включение основной рабочей системы ведет к перегреву деталей и служит причиной различных поломок.

Похожие публикации